Wogonin inhibits radiation-induced DNA damage repair in hepatocellular carcinoma cells by upregulating p21.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Korean Journal of Physiology & Pharmacology Pub Date : 2025-07-01 Epub Date: 2025-02-06 DOI:10.4196/kjpp.24.213
Xiao Xu, Yonghong Qian, Shusheng Zhu, Hu Tian, Pingping Zhai, Shimin Zhu, Jingjing Wang, Lei Xie, Songbing Qin
{"title":"Wogonin inhibits radiation-induced DNA damage repair in hepatocellular carcinoma cells by upregulating p21.","authors":"Xiao Xu, Yonghong Qian, Shusheng Zhu, Hu Tian, Pingping Zhai, Shimin Zhu, Jingjing Wang, Lei Xie, Songbing Qin","doi":"10.4196/kjpp.24.213","DOIUrl":null,"url":null,"abstract":"<p><p>Wogonin has been shown to exhibit anti-tumor effects by regulating the growth and inducing cell death in hepatocellular carcinoma (HCC) cells. However, its impact on radiotherapy for HCC remains unclear. This study aimed to elucidate the mechanisms and effects of wogonin in enhancing radiotherapy for HCC. The viability and cell cycle of HCC cells were assessed using CCK-8, trypan blue dye exclusion, and flow cytometry. RNA sequencing was performed to explore the genomic effects of wogonin on HCC cells. Immunofluorescence staining was employed to detect γ-H2AX distribution, and Western blot was used to evaluate the expression of γ-H2AX and p21. Wogonin induced cell cycle arrest and inhibited DNA damage repair in SMMC-7721 and HCC-LM3 cells following irradiation. RNA sequencing analysis of wogonin-and radiation-treated cells revealed significant enrichment of genes related to cell cycle progression, with notable changes in CDK inhibitor expression. Furthermore, wogonin in combination with irradiation increased the expression of γ-H2AX and p21 in HCC cells. Notably, p21 interference partially abrogated the anti-tumor effects of wogonin and radiation. Wogonin enhances the efficacy of radiotherapy in HCC by promoting cell cycle arrest and inhibiting DNA damage repair through upregulation of p21.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"419-429"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.24.213","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Wogonin has been shown to exhibit anti-tumor effects by regulating the growth and inducing cell death in hepatocellular carcinoma (HCC) cells. However, its impact on radiotherapy for HCC remains unclear. This study aimed to elucidate the mechanisms and effects of wogonin in enhancing radiotherapy for HCC. The viability and cell cycle of HCC cells were assessed using CCK-8, trypan blue dye exclusion, and flow cytometry. RNA sequencing was performed to explore the genomic effects of wogonin on HCC cells. Immunofluorescence staining was employed to detect γ-H2AX distribution, and Western blot was used to evaluate the expression of γ-H2AX and p21. Wogonin induced cell cycle arrest and inhibited DNA damage repair in SMMC-7721 and HCC-LM3 cells following irradiation. RNA sequencing analysis of wogonin-and radiation-treated cells revealed significant enrichment of genes related to cell cycle progression, with notable changes in CDK inhibitor expression. Furthermore, wogonin in combination with irradiation increased the expression of γ-H2AX and p21 in HCC cells. Notably, p21 interference partially abrogated the anti-tumor effects of wogonin and radiation. Wogonin enhances the efficacy of radiotherapy in HCC by promoting cell cycle arrest and inhibiting DNA damage repair through upregulation of p21.

Wogonin通过上调p21抑制辐射诱导的肝癌细胞DNA损伤修复。
Wogonin已被证明通过调节肝细胞癌(HCC)细胞的生长和诱导细胞死亡而具有抗肿瘤作用。然而,其对肝癌放疗的影响尚不清楚。本研究旨在阐明沃戈宁增强肝癌放疗的作用机制和作用。采用CCK-8、台盼蓝染色和流式细胞术评估肝癌细胞的活力和细胞周期。通过RNA测序来探索沃戈宁对HCC细胞的基因组效应。免疫荧光染色检测γ-H2AX的分布,Western blot检测γ-H2AX和p21的表达。Wogonin诱导SMMC-7721和HCC-LM3细胞辐照后细胞周期阻滞并抑制DNA损伤修复。对沃戈宁和辐射处理细胞的RNA测序分析显示,与细胞周期进展相关的基因显著富集,CDK抑制剂表达显著变化。此外,wogonin联合照射可增加HCC细胞中γ-H2AX和p21的表达。值得注意的是,p21干扰部分抵消了wogonin和放疗的抗肿瘤作用。Wogonin通过上调p21促进细胞周期阻滞和抑制DNA损伤修复,从而增强肝癌放疗的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Korean Journal of Physiology & Pharmacology
Korean Journal of Physiology & Pharmacology PHARMACOLOGY & PHARMACY-PHYSIOLOGY
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
6-12 weeks
期刊介绍: The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信