{"title":"DOCK1/ELMO1/Rac1 Signaling is Essential for Vitreous-Induced Migration and Contraction of ARPE19 Cells.","authors":"Duo Li, Yikeng Huang, Hetian Lei, Xionggao Huang","doi":"10.1089/jop.2024.0173","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Purpose:</i></b> To test the effects of dedicator of cytokinesis protein 1 (DOCK1) with its binding partner engulfment and cell motility protein 1 (ELMO1)-Rac1 axis on the vitreous-induced biological functions of retinal pigment epithelial (RPE) cells. <b><i>Methods:</i></b> Rac1 activity in RPE cells after vitreous stimulation was detected via a pull-down assay. The related protein expression levels were examined via western blot analysis. DOCK1 and ELMO1 knockdown cells were generated via CRISPR-Cas9 technology. Cytoskeletal reorganization was detected by immunofluorescent localization of F-actin. Cell proliferation, migration, invasion, and contraction ability were measured via the CCK8 assay, wound healing assay, transwell invasion assay, and collagen contraction assay. <b><i>Results:</i></b> Rac1 activity was significantly elevated in ARPE-19 cells stimulated with vitreous fluid for 30 min to 3 h. Depletion of either DOCK1 or ELMO1 with CRISPR/Cas9 attenuated vitreous-stimulated Rac1 activity, thus reversing the vitreous-induced cytoskeletal rearrangements. The functional cell biology results revealed that deficiencies of DOCK1 and ELMO1 significantly impeded the migration, invasion, and contraction abilities of vitreous-stimulated human RPE cells. <b><i>Conclusion:</i></b> This study demonstrated that the DOCK1/ELMO1-Rac1 axis plays an essential role in the pathogenesis of proliferative vitreoretinopathy (PVR), thus suggesting that interruption of this axis has potential for PVR therapy.</p>","PeriodicalId":16689,"journal":{"name":"Journal of Ocular Pharmacology and Therapeutics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocular Pharmacology and Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jop.2024.0173","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To test the effects of dedicator of cytokinesis protein 1 (DOCK1) with its binding partner engulfment and cell motility protein 1 (ELMO1)-Rac1 axis on the vitreous-induced biological functions of retinal pigment epithelial (RPE) cells. Methods: Rac1 activity in RPE cells after vitreous stimulation was detected via a pull-down assay. The related protein expression levels were examined via western blot analysis. DOCK1 and ELMO1 knockdown cells were generated via CRISPR-Cas9 technology. Cytoskeletal reorganization was detected by immunofluorescent localization of F-actin. Cell proliferation, migration, invasion, and contraction ability were measured via the CCK8 assay, wound healing assay, transwell invasion assay, and collagen contraction assay. Results: Rac1 activity was significantly elevated in ARPE-19 cells stimulated with vitreous fluid for 30 min to 3 h. Depletion of either DOCK1 or ELMO1 with CRISPR/Cas9 attenuated vitreous-stimulated Rac1 activity, thus reversing the vitreous-induced cytoskeletal rearrangements. The functional cell biology results revealed that deficiencies of DOCK1 and ELMO1 significantly impeded the migration, invasion, and contraction abilities of vitreous-stimulated human RPE cells. Conclusion: This study demonstrated that the DOCK1/ELMO1-Rac1 axis plays an essential role in the pathogenesis of proliferative vitreoretinopathy (PVR), thus suggesting that interruption of this axis has potential for PVR therapy.
期刊介绍:
Journal of Ocular Pharmacology and Therapeutics is the only peer-reviewed journal that combines the fields of ophthalmology and pharmacology to enable optimal treatment and prevention of ocular diseases and disorders. The Journal delivers the latest discoveries in the pharmacokinetics and pharmacodynamics of therapeutics for the treatment of ophthalmic disorders.
Journal of Ocular Pharmacology and Therapeutics coverage includes:
Glaucoma
Cataracts
Retinal degeneration
Ocular infection, trauma, and toxicology
Ocular drug delivery and biotransformation
Ocular pharmacotherapy/clinical trials
Ocular inflammatory and immune disorders
Gene and cell-based therapies
Ocular metabolic disorders
Ocular ischemia and blood flow
Proliferative disorders of the eye
Eyes on Drug Discovery - written by Gary D. Novack, PhD, featuring the latest updates on drug and device pipeline developments as well as policy/regulatory changes by the FDA.