Multi-omics uncovers immune-modulatory molecules in plasma contributing to resistance exercise-ameliorated locomotor disability after incomplete spinal cord injury.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Ren Zhou, Jibao Chen, Yunhan Tang, Chuijin Wei, Ping Yu, Xinmei Ding, Li'ao Zhu, Jiajia Yao, Zengqiang Ouyang, Jing Qiao, Shumin Xiong, Liaoliao Dong, Tong Yin, Haiqing Li, Ye Feng, Lin Cheng
{"title":"Multi-omics uncovers immune-modulatory molecules in plasma contributing to resistance exercise-ameliorated locomotor disability after incomplete spinal cord injury.","authors":"Ren Zhou, Jibao Chen, Yunhan Tang, Chuijin Wei, Ping Yu, Xinmei Ding, Li'ao Zhu, Jiajia Yao, Zengqiang Ouyang, Jing Qiao, Shumin Xiong, Liaoliao Dong, Tong Yin, Haiqing Li, Ye Feng, Lin Cheng","doi":"10.1186/s13073-025-01434-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Exercise rehabilitation therapy has garnered widespread recognition for its beneficial effects on the restoration of locomotor function in individuals with spinal cord injury (SCI). Notably, resistance exercise has demonstrated significant improvements in muscle strength, coordination, and overall functional recovery. However, to optimize clinical management and mimic exercise-like effects, it is imperative to obtain a comprehensive understanding of the molecular alterations that underlie these positive effects.</p><p><strong>Methods: </strong>We conducted a randomized controlled clinical trial investigating the effects of resistance exercise therapy for incomplete SCI. We integrated the analysis of plasma proteomics and peripheral blood mononuclear cells (PBMC) transcriptomics to explore the molecular and cellular changes induced by resistance exercise. Subsequently, we established a weight-loaded ladder-climbing mouse model to mimic the physiological effects of resistance exercise, and we analyzed the plasma proteome and metabolome, as well as the transcriptomes of PBMC and muscle tissue. Lastly, to confirm the transmissibility of the neuroprotective effects induced by resistance exercise, we intravenously injected plasma obtained from exercised male mice into SCI female mice during the non-acute phase.</p><p><strong>Results: </strong>Plasma proteomic and PBMC transcriptomic profiling underscored the notable involvement of the complement pathways and humoral immune response in the process of restoring locomotor function following SCI in the human trial. Moreover, it was emphasized that resistance exercise interventions could effectively modulate these pathways. Through employing plasma proteomic profiling and transcriptomic profiling of PBMC and muscle tissues in mice, our study revealed immunomodulatory responses that parallel those observed in human trials. In addition, our analysis of plasma metabolomics revealed an enhancement in lipid metabolism following resistance exercise. We observed that resistance exercise plasma exhibited significant effects in ameliorating locomotor disability after SCI via reducing demyelination and inhibiting neuronal apoptosis.</p><p><strong>Conclusions: </strong>Our investigation elucidates the molecular alterations associated with resistance exercise therapy promoting recovery of locomotor function following incomplete SCI. Moreover, we demonstrate the direct neuroprotective effects delivered via exercise plasma injection, which facilitates spinal cord repair. Mechanistically, the comprehensive multi-omics analysis involving both human and mice reveals that the principal constituents responsible for the observed neuroprotective effects within the plasma are predominantly immunoregulatory factors, warranting further experimental validation.</p><p><strong>Trial registration: </strong>The study was retrospectively registered on 17 July, 2024, in Chinese Clinical Trial Registry (No.: ChiCTR2400087038) at https://www.chictr.org.cn/ .</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"10"},"PeriodicalIF":10.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01434-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Exercise rehabilitation therapy has garnered widespread recognition for its beneficial effects on the restoration of locomotor function in individuals with spinal cord injury (SCI). Notably, resistance exercise has demonstrated significant improvements in muscle strength, coordination, and overall functional recovery. However, to optimize clinical management and mimic exercise-like effects, it is imperative to obtain a comprehensive understanding of the molecular alterations that underlie these positive effects.

Methods: We conducted a randomized controlled clinical trial investigating the effects of resistance exercise therapy for incomplete SCI. We integrated the analysis of plasma proteomics and peripheral blood mononuclear cells (PBMC) transcriptomics to explore the molecular and cellular changes induced by resistance exercise. Subsequently, we established a weight-loaded ladder-climbing mouse model to mimic the physiological effects of resistance exercise, and we analyzed the plasma proteome and metabolome, as well as the transcriptomes of PBMC and muscle tissue. Lastly, to confirm the transmissibility of the neuroprotective effects induced by resistance exercise, we intravenously injected plasma obtained from exercised male mice into SCI female mice during the non-acute phase.

Results: Plasma proteomic and PBMC transcriptomic profiling underscored the notable involvement of the complement pathways and humoral immune response in the process of restoring locomotor function following SCI in the human trial. Moreover, it was emphasized that resistance exercise interventions could effectively modulate these pathways. Through employing plasma proteomic profiling and transcriptomic profiling of PBMC and muscle tissues in mice, our study revealed immunomodulatory responses that parallel those observed in human trials. In addition, our analysis of plasma metabolomics revealed an enhancement in lipid metabolism following resistance exercise. We observed that resistance exercise plasma exhibited significant effects in ameliorating locomotor disability after SCI via reducing demyelination and inhibiting neuronal apoptosis.

Conclusions: Our investigation elucidates the molecular alterations associated with resistance exercise therapy promoting recovery of locomotor function following incomplete SCI. Moreover, we demonstrate the direct neuroprotective effects delivered via exercise plasma injection, which facilitates spinal cord repair. Mechanistically, the comprehensive multi-omics analysis involving both human and mice reveals that the principal constituents responsible for the observed neuroprotective effects within the plasma are predominantly immunoregulatory factors, warranting further experimental validation.

Trial registration: The study was retrospectively registered on 17 July, 2024, in Chinese Clinical Trial Registry (No.: ChiCTR2400087038) at https://www.chictr.org.cn/ .

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信