Nanoparticles containing intracellular proteins modulate neutrophil functional and phenotypic heterogeneity.

IF 5.7 2区 医学 Q1 IMMUNOLOGY
Frontiers in Immunology Pub Date : 2025-01-22 eCollection Date: 2024-01-01 DOI:10.3389/fimmu.2024.1494400
Leonore Raudszus, Farbod Bahreini, Susanne Allan, Kai-Uwe Kalies, Charles C Caldwell, Kathrin Kalies
{"title":"Nanoparticles containing intracellular proteins modulate neutrophil functional and phenotypic heterogeneity.","authors":"Leonore Raudszus, Farbod Bahreini, Susanne Allan, Kai-Uwe Kalies, Charles C Caldwell, Kathrin Kalies","doi":"10.3389/fimmu.2024.1494400","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are rapidly recruited to sites of infection, injury, or to immune complexes. Upon arrival, they initiate degranulation, release reactive oxygen species (ROS), and/or nuclear extracellular traps (NETs) to eliminate invading microorganisms, clear debris, or remove abnormal immunoglobulins. While these processes ideally trigger healing and a return to balance, overshooting neutrophil function can lead to life-threatening infections such as sepsis or persistent inflammation observed in various autoimmune diseases. However, recent evidence highlights a phenotypic and functional heterogeneity of neutrophils that extends well beyond their traditional - potentially harmful- role as first responders. For example, neutrophils regulate ongoing inflammation by modulating macrophage function through efferocytosis, T cell responses by antigen presentation and the release of cytokines. The factors that induce neutrophil differentiation into activating or regulatory phenotypes remain poorly defined. Here, we hypothesize that intracellular components that have been released into the extracellular space could contribute to the phenotypic heterogeneity of neutrophils. To find out, we used nanoparticles composed of intracellular proteins (cell-derived nanoparticles, CDNPs) and analyzed their effects on cultured murine bone marrow neutrophils (BMN). We observed that CDNPs activate BMN transiently with an increase in the expression of CD11b without triggering classical effector functions. Additionally, CDNPs induce the secretion of IL-10, shift PMA-induced cell death toward apoptosis, and increase the expression of CD80. Mechanistically, our findings indicate that 26% of BMNs ingest CDNPs. These BMNs preferentially express CD54+, fail to migrate toward CXCL12, exhibit diminished responses to LPS, and undergo apoptosis. These data identify CDNPs as biomaterials that modulate neutrophil behavior by fine-tuning the expression of CD11b and CD80.</p>","PeriodicalId":12622,"journal":{"name":"Frontiers in Immunology","volume":"15 ","pages":"1494400"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fimmu.2024.1494400","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrophils are rapidly recruited to sites of infection, injury, or to immune complexes. Upon arrival, they initiate degranulation, release reactive oxygen species (ROS), and/or nuclear extracellular traps (NETs) to eliminate invading microorganisms, clear debris, or remove abnormal immunoglobulins. While these processes ideally trigger healing and a return to balance, overshooting neutrophil function can lead to life-threatening infections such as sepsis or persistent inflammation observed in various autoimmune diseases. However, recent evidence highlights a phenotypic and functional heterogeneity of neutrophils that extends well beyond their traditional - potentially harmful- role as first responders. For example, neutrophils regulate ongoing inflammation by modulating macrophage function through efferocytosis, T cell responses by antigen presentation and the release of cytokines. The factors that induce neutrophil differentiation into activating or regulatory phenotypes remain poorly defined. Here, we hypothesize that intracellular components that have been released into the extracellular space could contribute to the phenotypic heterogeneity of neutrophils. To find out, we used nanoparticles composed of intracellular proteins (cell-derived nanoparticles, CDNPs) and analyzed their effects on cultured murine bone marrow neutrophils (BMN). We observed that CDNPs activate BMN transiently with an increase in the expression of CD11b without triggering classical effector functions. Additionally, CDNPs induce the secretion of IL-10, shift PMA-induced cell death toward apoptosis, and increase the expression of CD80. Mechanistically, our findings indicate that 26% of BMNs ingest CDNPs. These BMNs preferentially express CD54+, fail to migrate toward CXCL12, exhibit diminished responses to LPS, and undergo apoptosis. These data identify CDNPs as biomaterials that modulate neutrophil behavior by fine-tuning the expression of CD11b and CD80.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
11.00%
发文量
7153
审稿时长
14 weeks
期刊介绍: Frontiers in Immunology is a leading journal in its field, publishing rigorously peer-reviewed research across basic, translational and clinical immunology. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. Frontiers in Immunology is the official Journal of the International Union of Immunological Societies (IUIS). Encompassing the entire field of Immunology, this journal welcomes papers that investigate basic mechanisms of immune system development and function, with a particular emphasis given to the description of the clinical and immunological phenotype of human immune disorders, and on the definition of their molecular basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信