Temporal myc dynamics permit mitotic bypass, promoting polyploid phenotypes

IF 9.1 1区 医学 Q1 ONCOLOGY
Michael A. Loycano , Kenneth J. Pienta , Sarah R. Amend
{"title":"Temporal myc dynamics permit mitotic bypass, promoting polyploid phenotypes","authors":"Michael A. Loycano ,&nbsp;Kenneth J. Pienta ,&nbsp;Sarah R. Amend","doi":"10.1016/j.canlet.2025.217526","DOIUrl":null,"url":null,"abstract":"<div><div>High Myc phenotypes are extensively documented in the hyperproliferative cell cycle of cancer cells, as well as non-proliferative endoreplication cycles engaged during normal development and stress response. Notably, endoreplication in cancer produces chemotherapy resistant polyploid cells, necessitating a clearer understanding of altered cell cycle regulation that uncouples DNA replication and mitotic cell division. The c-Myc oncogene is a well-established transcriptional regulator of cell cycle progression and has been extensively published as an essential driver of the G1/S transition. Beyond S phase, Myc transcriptionally activates the proteins that drive mitotic entry. Sustained activation of Myc through the cell cycle transcriptionally couples DNA replication and mitotic cell division. Based on the literature in this field, we propose a new model of temporal regulation of Myc activity that serves to either couple or uncouple these two processes, determining cell cycle fate – proliferation or polyploidy. The mitotic cell cycle requires two pulses of Myc activity – the first driving the G1/S transition and the second driving the G2/M transition. During mitosis, Myc activity must be silenced to achieve high-fidelity division. Absence of the second activity pulse during G2 results in the downregulation of the proteins essential for mitotic entry and permits premature activation of APC/C, inducing mitotic bypass. A subsequent rise of Myc activity following mitotic bypass permits genome re-replication, driving polyploid phenotypes. This model serves to provide a new level of understanding to the global regulation of S phase-mitosis coupling, as well as a new lens to view low Myc phenotypes.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"613 ","pages":"Article 217526"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525000904","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High Myc phenotypes are extensively documented in the hyperproliferative cell cycle of cancer cells, as well as non-proliferative endoreplication cycles engaged during normal development and stress response. Notably, endoreplication in cancer produces chemotherapy resistant polyploid cells, necessitating a clearer understanding of altered cell cycle regulation that uncouples DNA replication and mitotic cell division. The c-Myc oncogene is a well-established transcriptional regulator of cell cycle progression and has been extensively published as an essential driver of the G1/S transition. Beyond S phase, Myc transcriptionally activates the proteins that drive mitotic entry. Sustained activation of Myc through the cell cycle transcriptionally couples DNA replication and mitotic cell division. Based on the literature in this field, we propose a new model of temporal regulation of Myc activity that serves to either couple or uncouple these two processes, determining cell cycle fate – proliferation or polyploidy. The mitotic cell cycle requires two pulses of Myc activity – the first driving the G1/S transition and the second driving the G2/M transition. During mitosis, Myc activity must be silenced to achieve high-fidelity division. Absence of the second activity pulse during G2 results in the downregulation of the proteins essential for mitotic entry and permits premature activation of APC/C, inducing mitotic bypass. A subsequent rise of Myc activity following mitotic bypass permits genome re-replication, driving polyploid phenotypes. This model serves to provide a new level of understanding to the global regulation of S phase-mitosis coupling, as well as a new lens to view low Myc phenotypes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer letters
Cancer letters 医学-肿瘤学
CiteScore
17.70
自引率
2.10%
发文量
427
审稿时长
15 days
期刊介绍: Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research. Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy. By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信