AMEND 2.0: module identification and multi-omic data integration with multiplex-heterogeneous graphs.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Samuel S Boyd, Chad Slawson, Jeffrey A Thompson
{"title":"AMEND 2.0: module identification and multi-omic data integration with multiplex-heterogeneous graphs.","authors":"Samuel S Boyd, Chad Slawson, Jeffrey A Thompson","doi":"10.1186/s12859-025-06063-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multi-omic studies provide comprehensive insight into biological systems by evaluating cellular changes between normal and pathological conditions at multiple levels of measurement. Biological networks, which represent interactions or associations between biomolecules, have been highly effective in facilitating omic analysis. However, current network-based methods lack generalizability to accommodate multiple data types across a range of diverse experiments.</p><p><strong>Results: </strong>We present AMEND 2.0, an updated active module identification method which can analyze multiplex and/or heterogeneous networks integrated with multi-omic data in a highly generalizable framework, in contrast to existing methods, which are mostly appropriate for at most two specific omic types. It is powered by Random Walk with Restart for multiplex-heterogeneous networks, with additional capabilities including degree bias adjustment and biased random walk for multi-objective module identification. AMEND was applied to two real-world multi-omic datasets: renal cell carcinoma data from The cancer genome atlas and an O-GlcNAc Transferase knockout study. Additional analyses investigate the performance of various subroutines of AMEND on tasks of node ranking and degree bias adjustment.</p><p><strong>Conclusions: </strong>While the analysis of multi-omic datasets in a network context is poised to provide deeper understanding of health and disease, new methods are required to fully take advantage of this increasingly complex data. The current study combines several network analysis techniques into a single versatile method for analyzing biological networks with multi-omic data that can be applied in many diverse scenarios. Software is freely available in the R programming language at https://github.com/samboyd0/AMEND .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"39"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06063-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Multi-omic studies provide comprehensive insight into biological systems by evaluating cellular changes between normal and pathological conditions at multiple levels of measurement. Biological networks, which represent interactions or associations between biomolecules, have been highly effective in facilitating omic analysis. However, current network-based methods lack generalizability to accommodate multiple data types across a range of diverse experiments.

Results: We present AMEND 2.0, an updated active module identification method which can analyze multiplex and/or heterogeneous networks integrated with multi-omic data in a highly generalizable framework, in contrast to existing methods, which are mostly appropriate for at most two specific omic types. It is powered by Random Walk with Restart for multiplex-heterogeneous networks, with additional capabilities including degree bias adjustment and biased random walk for multi-objective module identification. AMEND was applied to two real-world multi-omic datasets: renal cell carcinoma data from The cancer genome atlas and an O-GlcNAc Transferase knockout study. Additional analyses investigate the performance of various subroutines of AMEND on tasks of node ranking and degree bias adjustment.

Conclusions: While the analysis of multi-omic datasets in a network context is poised to provide deeper understanding of health and disease, new methods are required to fully take advantage of this increasingly complex data. The current study combines several network analysis techniques into a single versatile method for analyzing biological networks with multi-omic data that can be applied in many diverse scenarios. Software is freely available in the R programming language at https://github.com/samboyd0/AMEND .

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信