Dmitriy A Ruckodanov, Nigel T Maidment, Harold G Monbouquette
{"title":"Electrochemical Sensing of Dopamine with an Implantable Microelectrode Array Microprobe Including an On-Probe Iridium Oxide Reference Electrode.","authors":"Dmitriy A Ruckodanov, Nigel T Maidment, Harold G Monbouquette","doi":"10.1021/acschemneuro.4c00658","DOIUrl":null,"url":null,"abstract":"<p><p>Inclusion of an on-probe iridium oxide (IrOx) reference electrode on an implantable microelectrode array (MEA) microprobe enabled dopamine (DA) sensing with high sensitivity, an ultralow limit of detection, and high selectivity against common electroactive interferents. The monitoring of DA signaling in vivo is important for the study of brain disorders such as Parkinson's disease and substance abuse. A postfabrication method for electrochemical deposition of an IrOx film onto a targeted microelectrode enabled integration of an IrOx reference electrode (RE) onto the same MEA as the DA sensing, working electrode (WE). The on-probe IrOx RE is an attractive alternative to commonly used external Ag/AgCl wire REs, which can be unstable and can cause inflammatory responses in vivo. The on-probe IrOx RE was tested for support of DA sensing performance in two-electrode (i.e., WE and RE) and three-electrode (i.e., WE, RE and counter electrode) configurations. The sensitivities of the integrated and externally referenced DA sensing microprobes were comparable at ∼2500 nA/(μM·cm<sup>2</sup>), however the integrated three-electrode configuration exhibited a 6-fold lower limit of detection of ∼9 nM due to an 82% reduction in baseline noise. In addition, excellent 1000:1 selectivity against common electroactive interferents makes these DA sensing microprobes attractive for implementation in vivo.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"642-648"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00658","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inclusion of an on-probe iridium oxide (IrOx) reference electrode on an implantable microelectrode array (MEA) microprobe enabled dopamine (DA) sensing with high sensitivity, an ultralow limit of detection, and high selectivity against common electroactive interferents. The monitoring of DA signaling in vivo is important for the study of brain disorders such as Parkinson's disease and substance abuse. A postfabrication method for electrochemical deposition of an IrOx film onto a targeted microelectrode enabled integration of an IrOx reference electrode (RE) onto the same MEA as the DA sensing, working electrode (WE). The on-probe IrOx RE is an attractive alternative to commonly used external Ag/AgCl wire REs, which can be unstable and can cause inflammatory responses in vivo. The on-probe IrOx RE was tested for support of DA sensing performance in two-electrode (i.e., WE and RE) and three-electrode (i.e., WE, RE and counter electrode) configurations. The sensitivities of the integrated and externally referenced DA sensing microprobes were comparable at ∼2500 nA/(μM·cm2), however the integrated three-electrode configuration exhibited a 6-fold lower limit of detection of ∼9 nM due to an 82% reduction in baseline noise. In addition, excellent 1000:1 selectivity against common electroactive interferents makes these DA sensing microprobes attractive for implementation in vivo.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research