In silico design of an epitope-based vaccine ensemble for fasliolopsiasis.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Frontiers in Genetics Pub Date : 2025-01-22 eCollection Date: 2024-01-01 DOI:10.3389/fgene.2024.1451853
Ruchishree Konhar, Kanhu Charan Das, Aiboklang Nongrum, Rohan Raj Samal, Shailesh Kumar Sarangi, Devendra Kumar Biswal
{"title":"In silico design of an epitope-based vaccine ensemble for fasliolopsiasis.","authors":"Ruchishree Konhar, Kanhu Charan Das, Aiboklang Nongrum, Rohan Raj Samal, Shailesh Kumar Sarangi, Devendra Kumar Biswal","doi":"10.3389/fgene.2024.1451853","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Fasciolopsiasis, a food-borne intestinal disease is most common in Asia and the Indian subcontinent. Pigs are the reservoir host, and fasciolopsiasis is most widespread in locations where pigs are reared and aquatic plants are widely consumed. Human infection has been most commonly documented in China, Bangladesh, Southeast Asia, and parts of India. It predominates in school-age children, and significant worm burdens are not uncommon. The causal organism is <i>Fasciolopsis buski</i>, a giant intestinal fluke that infects humans and causes diarrhoea, fever, ascites, and intestinal blockage. The increasing prevalence of medication resistance and the necessity for an effective vaccination make controlling these diseases challenging.</p><p><strong>Methods: </strong>Over the last decade, we have achieved major advances in our understanding of intestinal fluke biology by in-depth interrogation and analysis of evolving <i>F. buski</i> omics datasets. The creation of large omics datasets for <i>F. buski</i> by our group has accelerated the discovery of key molecules involved in intestinal fluke biology, toxicity, and virulence that can be targeted for vaccine development. Finding successful vaccination antigen combinations from these huge number of genes/proteins in the available omics datasets is the key in combating these neglected tropical diseases. In the present study, we developed an <i>in silico</i> workflow to select antigens for composing a chimeric vaccine, which could be a significant technique for developing a fasciolopsiasis vaccine that prevents the parasite from causing serious harm.</p><p><strong>Results and discussion: </strong>This chimeric vaccine can now be tested experimentally and compared to other vaccine candidates to determine its potential influence on human health. Although the results are encouraging, additional validation is needed both <i>in vivo</i> and <i>in vitro</i>. Considering the extensive genetic data available for intestinal flukes that has expanded with technological advancements, we may need to reassess our methods and suggest a more sophisticated technique in the future for identifying vaccine molecules.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"15 ","pages":"1451853"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2024.1451853","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Fasciolopsiasis, a food-borne intestinal disease is most common in Asia and the Indian subcontinent. Pigs are the reservoir host, and fasciolopsiasis is most widespread in locations where pigs are reared and aquatic plants are widely consumed. Human infection has been most commonly documented in China, Bangladesh, Southeast Asia, and parts of India. It predominates in school-age children, and significant worm burdens are not uncommon. The causal organism is Fasciolopsis buski, a giant intestinal fluke that infects humans and causes diarrhoea, fever, ascites, and intestinal blockage. The increasing prevalence of medication resistance and the necessity for an effective vaccination make controlling these diseases challenging.

Methods: Over the last decade, we have achieved major advances in our understanding of intestinal fluke biology by in-depth interrogation and analysis of evolving F. buski omics datasets. The creation of large omics datasets for F. buski by our group has accelerated the discovery of key molecules involved in intestinal fluke biology, toxicity, and virulence that can be targeted for vaccine development. Finding successful vaccination antigen combinations from these huge number of genes/proteins in the available omics datasets is the key in combating these neglected tropical diseases. In the present study, we developed an in silico workflow to select antigens for composing a chimeric vaccine, which could be a significant technique for developing a fasciolopsiasis vaccine that prevents the parasite from causing serious harm.

Results and discussion: This chimeric vaccine can now be tested experimentally and compared to other vaccine candidates to determine its potential influence on human health. Although the results are encouraging, additional validation is needed both in vivo and in vitro. Considering the extensive genetic data available for intestinal flukes that has expanded with technological advancements, we may need to reassess our methods and suggest a more sophisticated technique in the future for identifying vaccine molecules.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Genetics
Frontiers in Genetics Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍: Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public. The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信