{"title":"A Varying Precision Beta Prime Autoregressive Moving Average Model With Application to Water Flow Data","authors":"Kleber H. Santos, Francisco Cribari-Neto","doi":"10.1002/env.2886","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We introduce a dynamic model tailored for positively valued time series. It accommodates both autoregressive and moving average dynamics and allows for explanatory variables. The underlying assumption is that each random variable follows, conditional on the set of previous information, the beta prime distribution. A novel feature of the proposed model is that both the conditional mean and conditional precision evolve over time. The model thus comprises two dynamic submodels, one for each parameter. The proposed model for the conditional precision parameter is parsimonious, incorporating first-order time dependence. Changes over time in the shape of the density are determined by the time evolution of two parameters, and not just of the conditional mean. We present simple closed-form expressions for the model's conditional log-likelihood function, score vector, and Fisher's information matrix. Monte Carlo simulation results are presented. Finally, we use the proposed approach to model and forecast two seasonal water flow time series. Specifically, we model the inflow and outflow rates of the reservoirs of two hydroelectric power plants. Overall, the forecasts obtained using the proposed model are more accurate than those yielded by alternative models.</p>\n </div>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2886","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a dynamic model tailored for positively valued time series. It accommodates both autoregressive and moving average dynamics and allows for explanatory variables. The underlying assumption is that each random variable follows, conditional on the set of previous information, the beta prime distribution. A novel feature of the proposed model is that both the conditional mean and conditional precision evolve over time. The model thus comprises two dynamic submodels, one for each parameter. The proposed model for the conditional precision parameter is parsimonious, incorporating first-order time dependence. Changes over time in the shape of the density are determined by the time evolution of two parameters, and not just of the conditional mean. We present simple closed-form expressions for the model's conditional log-likelihood function, score vector, and Fisher's information matrix. Monte Carlo simulation results are presented. Finally, we use the proposed approach to model and forecast two seasonal water flow time series. Specifically, we model the inflow and outflow rates of the reservoirs of two hydroelectric power plants. Overall, the forecasts obtained using the proposed model are more accurate than those yielded by alternative models.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.