Generalized covariance-based inference for models set-identified from independence restrictions

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Christian Gourieroux, Joann Jasiak
{"title":"Generalized covariance-based inference for models set-identified from independence restrictions","authors":"Christian Gourieroux,&nbsp;Joann Jasiak","doi":"10.1111/jtsa.12779","DOIUrl":null,"url":null,"abstract":"<p>This article develops statistical inference methods for a class of set-identified models, where the errors are known functions of observations and the parameters satisfy either serial or/and cross-sectional independence conditions. This class of models includes the independent component analysis (ICA), Structural Vector Autoregressive (SVAR), and multi-variate mixed causal–non-causal models. We use the Generalized Covariance (GCov) estimator to compute the residual-based portmanteau statistic for testing the error independence hypothesis. Next, we build the confidence sets for the identified sets of parameters by inverting the test statistic. We also discuss the choice (design) of these statistics. The approach is illustrated by simulations examining the under-identification condition in an ICA model and an application to financial return series.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 2","pages":"300-324"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12779","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12779","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This article develops statistical inference methods for a class of set-identified models, where the errors are known functions of observations and the parameters satisfy either serial or/and cross-sectional independence conditions. This class of models includes the independent component analysis (ICA), Structural Vector Autoregressive (SVAR), and multi-variate mixed causal–non-causal models. We use the Generalized Covariance (GCov) estimator to compute the residual-based portmanteau statistic for testing the error independence hypothesis. Next, we build the confidence sets for the identified sets of parameters by inverting the test statistic. We also discuss the choice (design) of these statistics. The approach is illustrated by simulations examining the under-identification condition in an ICA model and an application to financial return series.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Time Series Analysis
Journal of Time Series Analysis 数学-数学跨学科应用
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering. The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信