Characterizing Asymptotic Dependence between a Satellite Precipitation Product and Station Data in the Northern US Rocky Mountains via the Tail Dependence Regression Framework With a Gibbs Posterior Inference Approach
Brook T. Russell, Yiren Ding, Whitney K. Huang, Jamie L. Dyer
{"title":"Characterizing Asymptotic Dependence between a Satellite Precipitation Product and Station Data in the Northern US Rocky Mountains via the Tail Dependence Regression Framework With a Gibbs Posterior Inference Approach","authors":"Brook T. Russell, Yiren Ding, Whitney K. Huang, Jamie L. Dyer","doi":"10.1002/env.2890","DOIUrl":null,"url":null,"abstract":"<p>The use of satellite precipitation products (SPP) allows for precipitation information to be collected nearly globally, but questions remain regarding their ability to reproduce extreme precipitation over mountainous terrain. In this work, we assess the ability of the precipitation estimation from remotely sensed information using artificial neural networks-climate data record (PERSIANN-CDR) to capture daily precipitation extremes by comparing PERSIANN-CDR with corresponding station data in the summer at remote locations in the northern US Rocky Mountains of Wyoming, Idaho, and Montana. The assessment utilizes the regular variation framework from extreme value theory and consists of two parts: (1) evaluating the extent to which PERSIANN-CDR can capture precipitation extremes through inference on an asymptotic dependence parameter, concluding that the level of asymptotic dependence is moderate throughout the region; (2) developing a tail dependence regression modeling framework and a Gibbs posterior approach for inference to investigate the degree to which elevation and topographic heterogeneity impact the level of asymptotic dependence, finding that the inclusion of a set of meteorological covariates, when combined with the PERSIANN-CDR output, yields an increased level of asymptotic dependence with station data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2890","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2890","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The use of satellite precipitation products (SPP) allows for precipitation information to be collected nearly globally, but questions remain regarding their ability to reproduce extreme precipitation over mountainous terrain. In this work, we assess the ability of the precipitation estimation from remotely sensed information using artificial neural networks-climate data record (PERSIANN-CDR) to capture daily precipitation extremes by comparing PERSIANN-CDR with corresponding station data in the summer at remote locations in the northern US Rocky Mountains of Wyoming, Idaho, and Montana. The assessment utilizes the regular variation framework from extreme value theory and consists of two parts: (1) evaluating the extent to which PERSIANN-CDR can capture precipitation extremes through inference on an asymptotic dependence parameter, concluding that the level of asymptotic dependence is moderate throughout the region; (2) developing a tail dependence regression modeling framework and a Gibbs posterior approach for inference to investigate the degree to which elevation and topographic heterogeneity impact the level of asymptotic dependence, finding that the inclusion of a set of meteorological covariates, when combined with the PERSIANN-CDR output, yields an increased level of asymptotic dependence with station data.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.