{"title":"A comprehensive research on light field imaging: Theory and application","authors":"Fei Liu, Yunlong Wang, Qing Yang, Shubo Zhou, Kunbo Zhang","doi":"10.1049/cvi2.12321","DOIUrl":null,"url":null,"abstract":"<p>Computational photography is a combination of novel optical designs and processing methods to capture high-dimensional visual information. As an emerged promising technique, light field (LF) imaging measures the lighting, reflectance, focus, geometry and viewpoint in the free space, which has been widely explored for depth estimation, view synthesis, refocus, rendering, 3D displays, microscopy and other applications in computer vision in the past decades. In this paper, the authors present a comprehensive research survey on the LF imaging theory, technology and application. Firstly, the LF imaging process based on a MicroLens Array structure is derived, that is MLA-LF. Subsequently, the innovations of LF imaging technology are presented in terms of the imaging prototype, consumer LF camera and LF displays in Virtual Reality (VR) and Augmented Reality (AR). Finally the applications and challenges of LF imaging integrating with deep learning models are analysed, which consist of depth estimation, saliency detection, semantic segmentation, de-occlusion and defocus deblurring in recent years. It is believed that this paper will be a good reference for the future research on LF imaging technology in Artificial Intelligence era.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 8","pages":"1269-1284"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12321","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12321","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Computational photography is a combination of novel optical designs and processing methods to capture high-dimensional visual information. As an emerged promising technique, light field (LF) imaging measures the lighting, reflectance, focus, geometry and viewpoint in the free space, which has been widely explored for depth estimation, view synthesis, refocus, rendering, 3D displays, microscopy and other applications in computer vision in the past decades. In this paper, the authors present a comprehensive research survey on the LF imaging theory, technology and application. Firstly, the LF imaging process based on a MicroLens Array structure is derived, that is MLA-LF. Subsequently, the innovations of LF imaging technology are presented in terms of the imaging prototype, consumer LF camera and LF displays in Virtual Reality (VR) and Augmented Reality (AR). Finally the applications and challenges of LF imaging integrating with deep learning models are analysed, which consist of depth estimation, saliency detection, semantic segmentation, de-occlusion and defocus deblurring in recent years. It is believed that this paper will be a good reference for the future research on LF imaging technology in Artificial Intelligence era.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf