{"title":"Occluded object 6D pose estimation using foreground probability compensation","authors":"Meihui Ren, Junying Jia, Xin Lu","doi":"10.1049/cvi2.12314","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>6D object pose estimation usually refers to acquiring the 6D pose information of 3D objects in the sensor coordinate system using computer vision techniques. However, the task faces numerous challenges due to the complexity of natural scenes. One of the most significant challenges is occlusion, which is an unavoidable situation in 3D scenes and poses a significant obstacle in real-world applications. To tackle this issue, we propose a novel 6D pose estimation algorithm based on RGB-D images, aiming for enhanced robustness in occluded environments. Our approach follows the basic architecture of keypoint-based pose estimation algorithms. To better leverage complementary information of RGB-D data, we introduce a novel foreground probability-guided sampling strategy at the network's input stage. This strategy mitigates the sampling ratio imbalance between foreground and background points due to smaller foreground objects in occluded environments. Moreover, considering the impact of occlusion on semantic segmentation networks, we introduce a new object segmentation module. This module utilises traditional image processing techniques to compensate for severe semantic segmentation errors of deep learning networks. We evaluate our algorithm using the Occlusion LineMOD public dataset. Experimental results demonstrate that our method is more robust in occlusion environments compared to existing state-of-the-art algorithms. It maintains stable performance even in scenarios with no or low occlusion.</p>\n </section>\n </div>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 8","pages":"1325-1337"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12314","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cvi2.12314","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
6D object pose estimation usually refers to acquiring the 6D pose information of 3D objects in the sensor coordinate system using computer vision techniques. However, the task faces numerous challenges due to the complexity of natural scenes. One of the most significant challenges is occlusion, which is an unavoidable situation in 3D scenes and poses a significant obstacle in real-world applications. To tackle this issue, we propose a novel 6D pose estimation algorithm based on RGB-D images, aiming for enhanced robustness in occluded environments. Our approach follows the basic architecture of keypoint-based pose estimation algorithms. To better leverage complementary information of RGB-D data, we introduce a novel foreground probability-guided sampling strategy at the network's input stage. This strategy mitigates the sampling ratio imbalance between foreground and background points due to smaller foreground objects in occluded environments. Moreover, considering the impact of occlusion on semantic segmentation networks, we introduce a new object segmentation module. This module utilises traditional image processing techniques to compensate for severe semantic segmentation errors of deep learning networks. We evaluate our algorithm using the Occlusion LineMOD public dataset. Experimental results demonstrate that our method is more robust in occlusion environments compared to existing state-of-the-art algorithms. It maintains stable performance even in scenarios with no or low occlusion.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf