{"title":"Guest Editorial: Anomaly detection and open-set recognition applications for computer vision","authors":"Hakan Cevikalp, Robi Polikar, Ömer Nezih Gerek, Songcan Chen, Chuanxing Geng","doi":"10.1049/cvi2.12329","DOIUrl":null,"url":null,"abstract":"<p>Anomaly detection is a method employed to identify data points or patterns that significantly deviate from expected or normal behaviour within a dataset. This approach aims to detect observations regarded as unusual, erroneous, anomalous, rare, or potentially indicative of fraudulent or malicious activity. Open-set recognition, also referred to as open-set identification or open-set classification, is a pattern recognition task that extends traditional classification by addressing the presence of unknown or novel classes during the testing phase. This approach highlights a strong connection between anomaly detection and open-set recognition, as both seek to identify samples originating from unknown classes or distributions. Open-set recognition methods frequently involve modelling both known and unknown classes during training, allowing for the capture of the distribution of known classes while explicitly addressing the space of unknown classes. Techniques in open-set recognition may include outlier detection, density estimation, or configuring decision boundaries to better differentiate between known and unknown classes. This special issue calls for original contributions introducing novel datasets, innovative architectures, and advanced training methods for tasks related to visual anomaly detection and open-set recognition.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 8","pages":"1069-1071"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12329","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12329","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Anomaly detection is a method employed to identify data points or patterns that significantly deviate from expected or normal behaviour within a dataset. This approach aims to detect observations regarded as unusual, erroneous, anomalous, rare, or potentially indicative of fraudulent or malicious activity. Open-set recognition, also referred to as open-set identification or open-set classification, is a pattern recognition task that extends traditional classification by addressing the presence of unknown or novel classes during the testing phase. This approach highlights a strong connection between anomaly detection and open-set recognition, as both seek to identify samples originating from unknown classes or distributions. Open-set recognition methods frequently involve modelling both known and unknown classes during training, allowing for the capture of the distribution of known classes while explicitly addressing the space of unknown classes. Techniques in open-set recognition may include outlier detection, density estimation, or configuring decision boundaries to better differentiate between known and unknown classes. This special issue calls for original contributions introducing novel datasets, innovative architectures, and advanced training methods for tasks related to visual anomaly detection and open-set recognition.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf