A real-time cognitive map construction method based on the entorhinal-hippocampal working mechanism of the rat's brain

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yishen Liao, Naigong Yu
{"title":"A real-time cognitive map construction method based on the entorhinal-hippocampal working mechanism of the rat's brain","authors":"Yishen Liao,&nbsp;Naigong Yu","doi":"10.1049/ccs2.12101","DOIUrl":null,"url":null,"abstract":"<p>The firing of spatial cells in the entorhinal-hippocampal structure is believed to enable the formation of a cognitive map for the environment. Inspired by the spatial cognitive mechanism of the rat's brain, the authors proposed a real-time cognitive map construction method based on the entorhinal-hippocampal working mechanism. Firstly, based on the physiological properties of the rat's brain, the authors constructed an entorhinal-hippocampal CA3 neurocomputational model for path integration. Then, the transformation relationship between the cell plate and the real environment is used to solve the robot's position. Path integration inevitably generates cumulative errors, which require loop-closure detection and pose optimisation to eliminate errors. To solve the problem that the RatSLAM algorithm is slow in pose optimisation, the authors proposed a pose optimisation method based on a multi-layer CA1 place cell to improve the speed of pose optimisation. To validate the method, the authors designed simulation experiments, dataset experiments, and physical experiments. The experimental results showed that compared to other brain-like SLAM algorithms, the authors’ method possesses outstanding performance in path integration accuracy and map construction speed. As a result, the authors’ method can endow mobile robots with the ability to quickly and accurately construct cognitive maps in complex and unknown environments.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"6 4","pages":"49-64"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The firing of spatial cells in the entorhinal-hippocampal structure is believed to enable the formation of a cognitive map for the environment. Inspired by the spatial cognitive mechanism of the rat's brain, the authors proposed a real-time cognitive map construction method based on the entorhinal-hippocampal working mechanism. Firstly, based on the physiological properties of the rat's brain, the authors constructed an entorhinal-hippocampal CA3 neurocomputational model for path integration. Then, the transformation relationship between the cell plate and the real environment is used to solve the robot's position. Path integration inevitably generates cumulative errors, which require loop-closure detection and pose optimisation to eliminate errors. To solve the problem that the RatSLAM algorithm is slow in pose optimisation, the authors proposed a pose optimisation method based on a multi-layer CA1 place cell to improve the speed of pose optimisation. To validate the method, the authors designed simulation experiments, dataset experiments, and physical experiments. The experimental results showed that compared to other brain-like SLAM algorithms, the authors’ method possesses outstanding performance in path integration accuracy and map construction speed. As a result, the authors’ method can endow mobile robots with the ability to quickly and accurately construct cognitive maps in complex and unknown environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信