A review on inverse analysis models in steel material design

Yoshitaka Adachi, Ta-Te Chen, Fei Sun, Daichi Maruyama, Kengo Sawai, Yoshihito Fukatsu, Zhi-Lei Wang
{"title":"A review on inverse analysis models in steel material design","authors":"Yoshitaka Adachi,&nbsp;Ta-Te Chen,&nbsp;Fei Sun,&nbsp;Daichi Maruyama,&nbsp;Kengo Sawai,&nbsp;Yoshihito Fukatsu,&nbsp;Zhi-Lei Wang","doi":"10.1002/mgea.71","DOIUrl":null,"url":null,"abstract":"<p>This paper reviews various inverse analysis models used in steel material design, with a focus on integrating process, microstructure, and properties through advanced machine learning techniques. The study underscores the importance of establishing comprehensive models that effectively link these elements for enhanced materials engineering. Key models discussed include the convolutional neural network–artificial neural network-coupled model, which employs convolutional neural networks for feature extraction; the Bayesian-optimized generative adversarial network–conditional generative adversarial network model, which generates diverse virtual microstructures; the multi-objective optimization model, which concentrates on process–property relationships; and the microstructure–process parallelization model, which correlates microstructural features with process conditions. Each model is assessed for its strengths and limitations, influencing its practical applicability in material design. The paper concludes by advocating for continued improvements in model accuracy and versatility, with the ultimate goal of enhancing steel properties and expanding the scope of data-driven material development.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.71","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reviews various inverse analysis models used in steel material design, with a focus on integrating process, microstructure, and properties through advanced machine learning techniques. The study underscores the importance of establishing comprehensive models that effectively link these elements for enhanced materials engineering. Key models discussed include the convolutional neural network–artificial neural network-coupled model, which employs convolutional neural networks for feature extraction; the Bayesian-optimized generative adversarial network–conditional generative adversarial network model, which generates diverse virtual microstructures; the multi-objective optimization model, which concentrates on process–property relationships; and the microstructure–process parallelization model, which correlates microstructural features with process conditions. Each model is assessed for its strengths and limitations, influencing its practical applicability in material design. The paper concludes by advocating for continued improvements in model accuracy and versatility, with the ultimate goal of enhancing steel properties and expanding the scope of data-driven material development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信