Insight Into the Dynamic Active Sites and Catalytic Mechanism for CO2 Hydrogenation Reaction

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
You Han, Qin Hong, Chang-Jun Liu, Yao Nian
{"title":"Insight Into the Dynamic Active Sites and Catalytic Mechanism for CO2 Hydrogenation Reaction","authors":"You Han,&nbsp;Qin Hong,&nbsp;Chang-Jun Liu,&nbsp;Yao Nian","doi":"10.1002/wcms.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The catalytic CO<sub>2</sub> hydrogenation to produce valuable fuels and chemicals holds immense importance in addressing energy scarcity and environmental degradation. Given that the real catalytic reaction system is complex and dynamic, the structure of catalysts might experience dynamic evolution under real reaction conditions. It implies that the real active sites might only generated during the reaction process. The induction factor of dynamic evolution of active sites could be reactants, intermediates, products, and other local chemical environments. Utilizing in-situ/operando characterization techniques allows for the real-time observation of the dynamic evolution process, further combining multiscale theoretical simulations can effectively reveal the refined structure of real active sites and catalytic mechanisms. Herein, we summarized the latest advancements in understanding the dynamic active sites and catalytic mechanisms during the real reaction process for the CO<sub>2</sub> hydrogenation to C<sub>1</sub> products (CH<sub>3</sub>OH, CO, and CH<sub>4</sub>). The dynamic evolutions of the catalyst in morphology, size, valence state, and interface between active component and support were discussed, respectively. Future research could benefit from more in-situ characterization and theoretical simulation to explore the microstructure and reaction mechanism, aiming to produce high conversion and selectivity catalysts for CO<sub>2</sub> hydrogenation reactions.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70006","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The catalytic CO2 hydrogenation to produce valuable fuels and chemicals holds immense importance in addressing energy scarcity and environmental degradation. Given that the real catalytic reaction system is complex and dynamic, the structure of catalysts might experience dynamic evolution under real reaction conditions. It implies that the real active sites might only generated during the reaction process. The induction factor of dynamic evolution of active sites could be reactants, intermediates, products, and other local chemical environments. Utilizing in-situ/operando characterization techniques allows for the real-time observation of the dynamic evolution process, further combining multiscale theoretical simulations can effectively reveal the refined structure of real active sites and catalytic mechanisms. Herein, we summarized the latest advancements in understanding the dynamic active sites and catalytic mechanisms during the real reaction process for the CO2 hydrogenation to C1 products (CH3OH, CO, and CH4). The dynamic evolutions of the catalyst in morphology, size, valence state, and interface between active component and support were discussed, respectively. Future research could benefit from more in-situ characterization and theoretical simulation to explore the microstructure and reaction mechanism, aiming to produce high conversion and selectivity catalysts for CO2 hydrogenation reactions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信