x2DL: A high throughput architecture for binary-ring-learning-with-error-based post quantum cryptography schemes

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY
Shaik Ahmadunnisa, Sudha Ellison Mathe
{"title":"x2DL: A high throughput architecture for binary-ring-learning-with-error-based post quantum cryptography schemes","authors":"Shaik Ahmadunnisa,&nbsp;Sudha Ellison Mathe","doi":"10.1049/qtc2.12110","DOIUrl":null,"url":null,"abstract":"<p>Lattice-based cryptography is one of the most promising cryptographic scheme which lies on the hardness of ring-learning-with-error (RLWE). A new variant of RLWE, known as binary-ring-learning-with-error (BRLWE), has less key size and more efficient hardware implementations compared to RLWE-based schemes. The key arithmetic operation for BRLWE-based encryption scheme is the implementation of arithmetic operation represented by <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mi>D</mi>\n <mo>+</mo>\n <mi>H</mi>\n </mrow>\n <annotation> $FD+H$</annotation>\n </semantics></math>, where both <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> are integer polynomials, and <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is a binary polynomial. An efficient architecture to perform the arithmetic operation <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mi>D</mi>\n <mo>+</mo>\n <mi>H</mi>\n </mrow>\n <annotation> $FD+H$</annotation>\n </semantics></math> over a polynomial ring <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>x</mi>\n <mi>n</mi>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${x}^{n}+1$</annotation>\n </semantics></math> is proposed. We employ two linear feedback shift register structures comprising <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>x</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${x}^{2}$</annotation>\n </semantics></math>-<i>net</i> units in our design to reduce the computational time. This reduction in computational time yields to a significant improvement in the other performance metrics such as delay, area-delay product (ADP), power-delay product, throughput and efficiency compared to the existing designs. As per the experimental results, the authors’ proposed design has <span></span><math>\n <semantics>\n <mrow>\n <mn>32</mn>\n <mi>%</mi>\n </mrow>\n <annotation> $32\\%$</annotation>\n </semantics></math> improvement in ADP when compared to the recently reported work.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"349-359"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice-based cryptography is one of the most promising cryptographic scheme which lies on the hardness of ring-learning-with-error (RLWE). A new variant of RLWE, known as binary-ring-learning-with-error (BRLWE), has less key size and more efficient hardware implementations compared to RLWE-based schemes. The key arithmetic operation for BRLWE-based encryption scheme is the implementation of arithmetic operation represented by F D + H $FD+H$ , where both F $F$ and H $H$ are integer polynomials, and D $D$ is a binary polynomial. An efficient architecture to perform the arithmetic operation F D + H $FD+H$ over a polynomial ring x n + 1 ${x}^{n}+1$ is proposed. We employ two linear feedback shift register structures comprising x 2 ${x}^{2}$ -net units in our design to reduce the computational time. This reduction in computational time yields to a significant improvement in the other performance metrics such as delay, area-delay product (ADP), power-delay product, throughput and efficiency compared to the existing designs. As per the experimental results, the authors’ proposed design has 32 % $32\%$ improvement in ADP when compared to the recently reported work.

Abstract Image

x2DL:一种高吞吐量架构,用于基于二进制环带错误学习的后量子加密方案
基于格的密码方案是一种很有前途的密码方案,其关键在于其环带误差学习(RLWE)的可靠性。与基于RLWE的方案相比,RLWE的一种新变体,即二元环带误差学习(BRLWE),具有更小的密钥大小和更高效的硬件实现。基于brlwe的加密方案的关键算术运算是FD+H$ FD+H$表示的算术运算的实现,其中F$ F$和H$ H$都是整数多项式,D$ D$是二元多项式。在多项式环x n +1$ {x}^{n}+1$上执行算术运算FD+H$ FD+H$的有效架构是建议。在我们的设计中,我们采用了两个线性反馈移位寄存器结构,包括x 2 ${x}^{2}$ -net单元,以减少计算时间。与现有设计相比,计算时间的减少带来了其他性能指标的显着改善,例如延迟,面积延迟产品(ADP),功率延迟产品,吞吐量和效率。根据实验结果,与最近报道的工作相比,作者提出的设计在ADP方面有32%的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信