An efficient and secure quantum blind signature-based electronic cash transaction scheme

IF 2.5 Q3 QUANTUM SCIENCE & TECHNOLOGY
Aman Gupta, Gunja Venkat Chandra, Nayana Das, Goutam Paul
{"title":"An efficient and secure quantum blind signature-based electronic cash transaction scheme","authors":"Aman Gupta,&nbsp;Gunja Venkat Chandra,&nbsp;Nayana Das,&nbsp;Goutam Paul","doi":"10.1049/qtc2.12109","DOIUrl":null,"url":null,"abstract":"<p>The authors present a novel token exchange scheme with an example of an electronic cash (eCash) transaction scheme that ensures quantum security, addressing the vulnerabilities of existing models in the face of quantum computing threats. The authors’ comprehensive analysis of various quantum blind signature mechanisms revealed significant shortcomings in their applicability to eCash transactions and their resilience against quantum adversaries. In response, the authors drew inspiration from D. Chaum's original classical eCash scheme and innovated a quantum-secure transaction framework. The authors detail the developed protocol and rigorously evaluate its security aspects. The protocol's adherence to critical security requirements such as blindness, non-forgeability, non-deniability, and prevention of double spending is analysed. Moreover, the scheme against Intercept and Resend, Denial of Service, Man-in-the-Middle, and Entangle-and-Measure attacks is rigorously tested. The authors’ findings indicate a robust eCash transaction model capable of withstanding the challenges posed by quantum computing advancements.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"5 4","pages":"619-631"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12109","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/qtc2.12109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The authors present a novel token exchange scheme with an example of an electronic cash (eCash) transaction scheme that ensures quantum security, addressing the vulnerabilities of existing models in the face of quantum computing threats. The authors’ comprehensive analysis of various quantum blind signature mechanisms revealed significant shortcomings in their applicability to eCash transactions and their resilience against quantum adversaries. In response, the authors drew inspiration from D. Chaum's original classical eCash scheme and innovated a quantum-secure transaction framework. The authors detail the developed protocol and rigorously evaluate its security aspects. The protocol's adherence to critical security requirements such as blindness, non-forgeability, non-deniability, and prevention of double spending is analysed. Moreover, the scheme against Intercept and Resend, Denial of Service, Man-in-the-Middle, and Entangle-and-Measure attacks is rigorously tested. The authors’ findings indicate a robust eCash transaction model capable of withstanding the challenges posed by quantum computing advancements.

Abstract Image

一种高效、安全的量子盲签名电子现金交易方案
作者提出了一种新的令牌交换方案,并以电子现金(eCash)交易方案为例,确保量子安全,解决了现有模型在面对量子计算威胁时的漏洞。作者对各种量子盲签名机制的综合分析揭示了它们在eCash交易的适用性和对量子对手的弹性方面的重大缺陷。作为回应,作者从D. Chaum最初的经典eCash方案中汲取灵感,创新了一个量子安全的交易框架。作者详细介绍了开发的协议,并严格评估了其安全方面。分析了该协议对关键安全要求的遵守,如盲性、不可伪造性、不可否认性和防止双重支出。此外,针对拦截和重发、拒绝服务、中间人攻击和纠缠和测量攻击的方案进行了严格的测试。作者的研究结果表明,一个强大的电子现金交易模型能够承受量子计算进步带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信