Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models” by Bonas et al.

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2025-02-05 DOI:10.1002/env.2898
Philipp Otto
{"title":"Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models” by Bonas et al.","authors":"Philipp Otto","doi":"10.1002/env.2898","DOIUrl":null,"url":null,"abstract":"<p>Motivated by empirical case studies and discussions of Bonas et al. (2024), this discussion paper critically examines challenges in the predictability of environmental processes, focusing on three key spheres: (a) predictability and interpretability, (b) predictability in dynamic environments, and (c) predictability into unknown spaces. These spheres highlight the responsibilities within environmetrics to ensure that predictive models, particularly advanced machine learning and deep learning methods, are applied thoughtfully. First, we discuss the trade-off between interpretability and predictive complexity, contrasting the transparency of traditional statistical models with the “black-box” nature of machine learning but also highlighting their enormous potential for exploiting new data sources and types. Second, we address real-time adaptability, where models must handle concept drift and should, therefore, be continuously monitored. Finally, we consider the challenges of extrapolating predictions into unknown/nontrained areas, underscoring the risks of model overreach. This paper aims to contribute to the discussion in the field, emphasizing the critical role environmetricians play in advancing responsible, interpretable, and scientifically sound predictive practices.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2898","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2898","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by empirical case studies and discussions of Bonas et al. (2024), this discussion paper critically examines challenges in the predictability of environmental processes, focusing on three key spheres: (a) predictability and interpretability, (b) predictability in dynamic environments, and (c) predictability into unknown spaces. These spheres highlight the responsibilities within environmetrics to ensure that predictive models, particularly advanced machine learning and deep learning methods, are applied thoughtfully. First, we discuss the trade-off between interpretability and predictive complexity, contrasting the transparency of traditional statistical models with the “black-box” nature of machine learning but also highlighting their enormous potential for exploiting new data sources and types. Second, we address real-time adaptability, where models must handle concept drift and should, therefore, be continuously monitored. Finally, we consider the challenges of extrapolating predictions into unknown/nontrained areas, underscoring the risks of model overreach. This paper aims to contribute to the discussion in the field, emphasizing the critical role environmetricians play in advancing responsible, interpretable, and scientifically sound predictive practices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信