Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures

Yudong Shi, Yinggan Zhang, Jiansen Wen, Zhou Cui, Jianhui Chen, Xiaochun Huang, Cuilian Wen, Baisheng Sa, Zhimei Sun
{"title":"Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures","authors":"Yudong Shi,&nbsp;Yinggan Zhang,&nbsp;Jiansen Wen,&nbsp;Zhou Cui,&nbsp;Jianhui Chen,&nbsp;Xiaochun Huang,&nbsp;Cuilian Wen,&nbsp;Baisheng Sa,&nbsp;Zhimei Sun","doi":"10.1002/mgea.76","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML) techniques have made enormous progress in the field of materials science. However, many conventional ML algorithms operate as “black-boxes”, lacking transparency in revealing explicit relationships between material features and target properties. To address this, the development of interpretable ML models is essential to drive further advancements in AI-driven materials discovery. In this study, we present an interpretable framework that combines traditional machine learning with symbolic regression, using Janus III–VI vdW heterostructures as a case study. This approach enables fast and accurate predictions of stability and electronic structure. Our results demonstrate that the prediction accuracy using the classification model for stability, based on formation energy, reaches 0.960. On the other hand, the <i>R</i><sup>2</sup>, MAE, and RMSE value using the regression model for electronic structure prediction, based on band gap, achieves 0.927, 0.113, and 0.141 on the testing set, respectively. Additionally, we identify a universal interpretable descriptor comprising five simple parameters that reveals the underlying physical relationships between the candidate heterostructures and their band gaps. This descriptor not only delivers high accuracy in band gap prediction but also provides explicit physical insight into the material properties.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.76","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) techniques have made enormous progress in the field of materials science. However, many conventional ML algorithms operate as “black-boxes”, lacking transparency in revealing explicit relationships between material features and target properties. To address this, the development of interpretable ML models is essential to drive further advancements in AI-driven materials discovery. In this study, we present an interpretable framework that combines traditional machine learning with symbolic regression, using Janus III–VI vdW heterostructures as a case study. This approach enables fast and accurate predictions of stability and electronic structure. Our results demonstrate that the prediction accuracy using the classification model for stability, based on formation energy, reaches 0.960. On the other hand, the R2, MAE, and RMSE value using the regression model for electronic structure prediction, based on band gap, achieves 0.927, 0.113, and 0.141 on the testing set, respectively. Additionally, we identify a universal interpretable descriptor comprising five simple parameters that reveals the underlying physical relationships between the candidate heterostructures and their band gaps. This descriptor not only delivers high accuracy in band gap prediction but also provides explicit physical insight into the material properties.

Abstract Image

Janus III-VI范德华异质结构稳定性和电子结构预测的可解释机器学习
机器学习技术在材料科学领域取得了巨大的进步。然而,许多传统的机器学习算法作为“黑盒”运行,在揭示材料特征和目标属性之间的明确关系方面缺乏透明度。为了解决这个问题,开发可解释的ML模型对于推动人工智能驱动的材料发现的进一步发展至关重要。在本研究中,我们提出了一个结合传统机器学习和符号回归的可解释框架,并以Janus III-VI vdW异质结构为例进行了研究。这种方法可以快速准确地预测稳定性和电子结构。结果表明,基于地层能量的稳定性分类模型预测精度可达0.960。另一方面,基于带隙的电子结构预测回归模型在测试集上的R2、MAE和RMSE值分别达到0.927、0.113和0.141。此外,我们确定了一个通用的可解释描述符,包括五个简单的参数,揭示了候选异质结构与其带隙之间的潜在物理关系。这种描述符不仅提供了高精度的带隙预测,而且还提供了对材料特性的明确的物理洞察力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信