Sunlight responsive photo-oxidation of methylene blue dye using MgO/MnO2 nanoparticles

Hamza Laksaci , Nassima Djihane Zemani , Omar Khelifi , Muhammad Saeed , Badreddine Belhamdi , Abdelaziz Arroussi , Mohamed Trari
{"title":"Sunlight responsive photo-oxidation of methylene blue dye using MgO/MnO2 nanoparticles","authors":"Hamza Laksaci ,&nbsp;Nassima Djihane Zemani ,&nbsp;Omar Khelifi ,&nbsp;Muhammad Saeed ,&nbsp;Badreddine Belhamdi ,&nbsp;Abdelaziz Arroussi ,&nbsp;Mohamed Trari","doi":"10.1016/j.colsuc.2025.100062","DOIUrl":null,"url":null,"abstract":"<div><div>Despite extensive research on metal oxide-based photocatalysts, challenges remain in optimizing their structural and defect properties to enhance photocatalytic efficiency for wastewater treatment, while maintaining stability and scalability. Herein, the application of MgO/MnO<sub>2</sub> for the photo-oxidation of methylene blue dye (MB), has been investigated under sunlight irradiations. The MgO/MnO<sub>2</sub> was prepared by co-precipitation in a one pot synthetic route. The resulted samples were characterized by FTIR, XRD, diffuse reflectance and electrical conductivity. The XRD showed that α-MnO<sub>2</sub> crystallizes in tetragonal symmetry with a medium broadening, characteristic of Nano-crystallites. A direct optical transition at 1.85 eV was determined from the diffuse reflectance. The capacitance-potential graph (C<sup>−2</sup> - E) exhibits a positive slope, characteristic of <em><strong>n</strong></em>-type behavior with a flat band potential of <span><math><mrow><mo>−</mo><mn>0.027</mn></mrow></math></span> V<sub>SCE</sub>. Hence, the photoholes in the valence band (1.7 V<sub>SCE</sub>) oxidize water into reactive radicals <sup>•</sup>OH, involved in the MB mineralization. The photocatalytic capability of Nano-materials was assessed through photodegradation of MB by solar light. Results showed that the MB elimination rate rises with increasing in catalyst load and the declines in the initial MB concentration. The catalytic behavior of MgO/MnO<sub>2</sub> synthesized by this method exhibits excellent efficiency, achieving 87 % degradation of MB under optimal conditions: 10 mg/L dye concentration and 75 mg/L catalyst dosage using the MgMn-2 catalyst. This research proposes a promising strategy to enhance the photocatalytic activity of MnO<sub>2</sub> by doping it with MgO, thereby improving its performance and contributing to a deeper understanding of the underlying photocatalytic mechanisms.</div></div>","PeriodicalId":100290,"journal":{"name":"Colloids and Surfaces C: Environmental Aspects","volume":"3 ","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces C: Environmental Aspects","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949759025000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite extensive research on metal oxide-based photocatalysts, challenges remain in optimizing their structural and defect properties to enhance photocatalytic efficiency for wastewater treatment, while maintaining stability and scalability. Herein, the application of MgO/MnO2 for the photo-oxidation of methylene blue dye (MB), has been investigated under sunlight irradiations. The MgO/MnO2 was prepared by co-precipitation in a one pot synthetic route. The resulted samples were characterized by FTIR, XRD, diffuse reflectance and electrical conductivity. The XRD showed that α-MnO2 crystallizes in tetragonal symmetry with a medium broadening, characteristic of Nano-crystallites. A direct optical transition at 1.85 eV was determined from the diffuse reflectance. The capacitance-potential graph (C−2 - E) exhibits a positive slope, characteristic of n-type behavior with a flat band potential of 0.027 VSCE. Hence, the photoholes in the valence band (1.7 VSCE) oxidize water into reactive radicals OH, involved in the MB mineralization. The photocatalytic capability of Nano-materials was assessed through photodegradation of MB by solar light. Results showed that the MB elimination rate rises with increasing in catalyst load and the declines in the initial MB concentration. The catalytic behavior of MgO/MnO2 synthesized by this method exhibits excellent efficiency, achieving 87 % degradation of MB under optimal conditions: 10 mg/L dye concentration and 75 mg/L catalyst dosage using the MgMn-2 catalyst. This research proposes a promising strategy to enhance the photocatalytic activity of MnO2 by doping it with MgO, thereby improving its performance and contributing to a deeper understanding of the underlying photocatalytic mechanisms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信