{"title":"Thermodynamically stable magnetic vortex states in magnetic crystals","authors":"A. Bogdanov, A. Hubert","doi":"10.1016/0304-8853(94)90046-9","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic vortices can be stabilized in magnetic materials by a so-called Dzyaloshinsky interaction. Their structure is calculated systematically for uniaxial ferromagnetic materials of the easy-axis type by numerically solving the differential equations in the circular cell approximation. In reduced units two external parameters are left over: the value of an external field parallel to the crystal axis and the relative strength of the Dzyaloshinsky interaction. A phase diagram in these variables consists of three thermodynamically stable phases: a uniform state at high field values, a one-dimensionally modulated spiral state at low fields and the new vortex state in an intermediate field range. The corresponding calculated magnetization curves clearly show the transitions between these states.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"138 3","pages":"Pages 255-269"},"PeriodicalIF":3.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304885394900469","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic vortices can be stabilized in magnetic materials by a so-called Dzyaloshinsky interaction. Their structure is calculated systematically for uniaxial ferromagnetic materials of the easy-axis type by numerically solving the differential equations in the circular cell approximation. In reduced units two external parameters are left over: the value of an external field parallel to the crystal axis and the relative strength of the Dzyaloshinsky interaction. A phase diagram in these variables consists of three thermodynamically stable phases: a uniform state at high field values, a one-dimensionally modulated spiral state at low fields and the new vortex state in an intermediate field range. The corresponding calculated magnetization curves clearly show the transitions between these states.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.