Multiple sclerosis diagnosis with brain MRI retrieval: A deep learning approach

Q3 Mathematics
R.M. Haggag , Eman M. Ali , M.E. Khalifa , Mohamed Taha
{"title":"Multiple sclerosis diagnosis with brain MRI retrieval: A deep learning approach","authors":"R.M. Haggag ,&nbsp;Eman M. Ali ,&nbsp;M.E. Khalifa ,&nbsp;Mohamed Taha","doi":"10.1016/j.rico.2025.100533","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple Sclerosis (MS) is an auto-immune disorder affecting the central nervous system, affecting 2.8 million people worldwide. Early diagnosis is crucial due to its profound social and economic impacts. MRI is commonly used for monitoring abnormalities. This study proposes a novel Content-Based Medical Image Retrieval (CBMIR) framework using Convolutional Neural Networks (CNN) and Transfer Learning (TL) for MS diagnosis using MRI data. Our framework utilizes The Inception V3 model that is pre-trained on ImageNet and RadImageNet datasets, and we modified the model by adding a new block of six layers to reduce the features’ dimensionality in the feature extraction phase. Fine-tuning the hyper-parameters for the whole system was done using the Bayesian optimizer. We experiment with Nine different distance metrics to measure query and database image similarity. Experiments on four public MS-MRI datasets demonstrated the end-to-end deep learning framework’s generalizability without extensive pre-processing, with mAP scores of 86.20%, 93.77%, 94.18%, and 90.46%, respectively demonstrating its effectiveness in retrieval. Moreover, a comparison with related CBMIR systems confirmed the effectiveness of our model.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"18 ","pages":"Article 100533"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple Sclerosis (MS) is an auto-immune disorder affecting the central nervous system, affecting 2.8 million people worldwide. Early diagnosis is crucial due to its profound social and economic impacts. MRI is commonly used for monitoring abnormalities. This study proposes a novel Content-Based Medical Image Retrieval (CBMIR) framework using Convolutional Neural Networks (CNN) and Transfer Learning (TL) for MS diagnosis using MRI data. Our framework utilizes The Inception V3 model that is pre-trained on ImageNet and RadImageNet datasets, and we modified the model by adding a new block of six layers to reduce the features’ dimensionality in the feature extraction phase. Fine-tuning the hyper-parameters for the whole system was done using the Bayesian optimizer. We experiment with Nine different distance metrics to measure query and database image similarity. Experiments on four public MS-MRI datasets demonstrated the end-to-end deep learning framework’s generalizability without extensive pre-processing, with mAP scores of 86.20%, 93.77%, 94.18%, and 90.46%, respectively demonstrating its effectiveness in retrieval. Moreover, a comparison with related CBMIR systems confirmed the effectiveness of our model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信