Moderate effects of species mixing on the growth and drought response of Austrocedrus chilensis in northern Patagonia

IF 2.7 3区 农林科学 Q1 FORESTRY
Loreta Facciano, Yamila Sasal, María Laura Suarez
{"title":"Moderate effects of species mixing on the growth and drought response of Austrocedrus chilensis in northern Patagonia","authors":"Loreta Facciano,&nbsp;Yamila Sasal,&nbsp;María Laura Suarez","doi":"10.1016/j.dendro.2025.126297","DOIUrl":null,"url":null,"abstract":"<div><div>Accelerated climate warming, marked by rising temperatures and reduced precipitation, intensifies droughts, causing severe impacts on forest ecosystems. The mechanisms underlying the loss of tree vigor due to climate warming, are not fully understood. Overall, it appears that vigor loss is moderately controlled by regional climatic patterns and species admixture, as intra- and inter-specific interactions within a stand influence tree growth and drought performance. However, the role of the species mixing under climatic stress remains inconclusive. Here, we applied a dendroecological approach to assess growth trends, climatic responses, and drought performance in <em>Austrocedrus chilensis</em> trees growing under three species stand mixtures (pure, mixed, and diverse) in Patagonia, Argentina. Along the precipitation gradient, the general relationship between <em>A. chilensis</em> growth and moisture availability is driven by regional climatic conditions, while the response to individual extreme events is modulated by species mixing. We found that trees in mixed and diverse stands exhibited a positive growth trend in the recent decades, suggesting a beneficial effect of species combination; though the evidence remains limited on whether this complementarity lessens growth response during droughts. The drought response of <em>A. chilensis</em> was mainly shaped by the precipitation gradient rather than by stand admixture effects. However, species mixing may buffer regional climate impacts, slightly enhancing drought resilience. Comparing nearby stands with different compositions (pure vs. mixed) revealed varying climate-growth relationships, suggesting a coherent species-mixing effect on species growth. In conclusion, this relationship between stand diversity and functioning appears to be influenced by site-specific factors and species identity.</div></div>","PeriodicalId":50595,"journal":{"name":"Dendrochronologia","volume":"90 ","pages":"Article 126297"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dendrochronologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1125786525000116","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerated climate warming, marked by rising temperatures and reduced precipitation, intensifies droughts, causing severe impacts on forest ecosystems. The mechanisms underlying the loss of tree vigor due to climate warming, are not fully understood. Overall, it appears that vigor loss is moderately controlled by regional climatic patterns and species admixture, as intra- and inter-specific interactions within a stand influence tree growth and drought performance. However, the role of the species mixing under climatic stress remains inconclusive. Here, we applied a dendroecological approach to assess growth trends, climatic responses, and drought performance in Austrocedrus chilensis trees growing under three species stand mixtures (pure, mixed, and diverse) in Patagonia, Argentina. Along the precipitation gradient, the general relationship between A. chilensis growth and moisture availability is driven by regional climatic conditions, while the response to individual extreme events is modulated by species mixing. We found that trees in mixed and diverse stands exhibited a positive growth trend in the recent decades, suggesting a beneficial effect of species combination; though the evidence remains limited on whether this complementarity lessens growth response during droughts. The drought response of A. chilensis was mainly shaped by the precipitation gradient rather than by stand admixture effects. However, species mixing may buffer regional climate impacts, slightly enhancing drought resilience. Comparing nearby stands with different compositions (pure vs. mixed) revealed varying climate-growth relationships, suggesting a coherent species-mixing effect on species growth. In conclusion, this relationship between stand diversity and functioning appears to be influenced by site-specific factors and species identity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dendrochronologia
Dendrochronologia FORESTRY-GEOGRAPHY, PHYSICAL
CiteScore
5.50
自引率
13.30%
发文量
82
审稿时长
22.8 weeks
期刊介绍: Dendrochronologia is a peer-reviewed international scholarly journal that presents high-quality research related to growth rings of woody plants, i.e., trees and shrubs, and the application of tree-ring studies. The areas covered by the journal include, but are not limited to: Archaeology Botany Climatology Ecology Forestry Geology Hydrology Original research articles, reviews, communications, technical notes and personal notes are considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信