Integration of artificial intelligence and advanced optimization techniques for continuous gas lift under restricted gas supply: A case study

IF 3 Q2 ENGINEERING, CHEMICAL
Leila Zeinolabedini , Forough Ameli , Abdolhossein Hemmati-Sarapardeh
{"title":"Integration of artificial intelligence and advanced optimization techniques for continuous gas lift under restricted gas supply: A case study","authors":"Leila Zeinolabedini ,&nbsp;Forough Ameli ,&nbsp;Abdolhossein Hemmati-Sarapardeh","doi":"10.1016/j.dche.2025.100220","DOIUrl":null,"url":null,"abstract":"<div><div>In the oil industry, gas lift is essential for facilitating fluid flow toward the production unit. However, the challenge lies in balancing gas availability constraints to achieve maximum efficiency in an oil field. This study utilizes the integrated production modeling (IPM) software to simulate an oil field operation in Iran. To this end, 154 data points constructed by a central composite design (CCD) experiment were utilized to develop neural network models. Therefore, four robust models, including multilayer perceptron (MLP), radial basis function (RBF), general regression neural network (GRNN), and cascade forward neural network (CFNN), were implemented for modeling. In addition, the net present value (NPV) serves as the objective function. To optimize the selected input variables, including tubing inside diameter, gas injection rate, and separator pressure, various optimization algorithms such as particle swarm optimization (PSO), ant colony optimization (ACO), genetic algorithm (GA), and a Novel optimization algorithm in a gas-lift study called grey wolf optimization (GWO), were utilized considering the constraint of the limited available gas. A penalty function was used to incorporate this constraint into the optimization procedure. There has previously been much research in the area of gas lift optimization. However, robust neural networks (GRNN and CFNN) have not been used for integrated production system modeling, nor have GWO algorithms been used to maximize the production or NPV in gas lift operations until now. The results for model errors were found to be %2.09, %2.99, %10.68, and %1.75 for MLP, RBF, GRNN, and CFNN, respectively. These findings imply that the CFNN model is more efficient. Also, comparing the GWO approach to other algorithms, the largest NPV ($788,512,038$) was yielded with less sensitivity of its adjustable parameters. Thereupon, NPV and cumulated oil production indicate a significant increase compared to ordinary NPV and oil production with values of 351,087,876.4 $ and 14,308 STB, respectively. High NPV effectively captures the overall added value of the project and, as a benchmark, helps to make informed decisions about investment and resource allocation, ultimately driving economic growth and increasing competitiveness in using this method.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"14 ","pages":"Article 100220"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508125000043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the oil industry, gas lift is essential for facilitating fluid flow toward the production unit. However, the challenge lies in balancing gas availability constraints to achieve maximum efficiency in an oil field. This study utilizes the integrated production modeling (IPM) software to simulate an oil field operation in Iran. To this end, 154 data points constructed by a central composite design (CCD) experiment were utilized to develop neural network models. Therefore, four robust models, including multilayer perceptron (MLP), radial basis function (RBF), general regression neural network (GRNN), and cascade forward neural network (CFNN), were implemented for modeling. In addition, the net present value (NPV) serves as the objective function. To optimize the selected input variables, including tubing inside diameter, gas injection rate, and separator pressure, various optimization algorithms such as particle swarm optimization (PSO), ant colony optimization (ACO), genetic algorithm (GA), and a Novel optimization algorithm in a gas-lift study called grey wolf optimization (GWO), were utilized considering the constraint of the limited available gas. A penalty function was used to incorporate this constraint into the optimization procedure. There has previously been much research in the area of gas lift optimization. However, robust neural networks (GRNN and CFNN) have not been used for integrated production system modeling, nor have GWO algorithms been used to maximize the production or NPV in gas lift operations until now. The results for model errors were found to be %2.09, %2.99, %10.68, and %1.75 for MLP, RBF, GRNN, and CFNN, respectively. These findings imply that the CFNN model is more efficient. Also, comparing the GWO approach to other algorithms, the largest NPV ($788,512,038$) was yielded with less sensitivity of its adjustable parameters. Thereupon, NPV and cumulated oil production indicate a significant increase compared to ordinary NPV and oil production with values of 351,087,876.4 $ and 14,308 STB, respectively. High NPV effectively captures the overall added value of the project and, as a benchmark, helps to make informed decisions about investment and resource allocation, ultimately driving economic growth and increasing competitiveness in using this method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信