Varsha Yadav, Mary Lunson, Hannah Shore, Jean Aucamp
{"title":"Systematic Development of a Detergent Toolbox as an Alternative to Triton X-100","authors":"Varsha Yadav, Mary Lunson, Hannah Shore, Jean Aucamp","doi":"10.1002/bit.28947","DOIUrl":null,"url":null,"abstract":"Detergents are routinely included in protein purification processes to inactivate enveloped viruses that may arise from adventitious or endogenous contamination. The detergent Triton X-100 (TX-100) has been widely used as part of the production process for therapeutic proteins. However, recent ecological studies indicate that TX-100 and its metabolites detrimentally impact aquatic organisms, thus alternative detergents for viral inactivation are required. The overall aim of this study was to identify one or more detergents that are a suitable replacement for TX-100 in the viral inactivation step. In stage one, 16 potential alternatives were identified and screened against TX-100 using multiple criteria such as solubility, feasibility of virus inactivation, critical micelle concentration, and storage conditions. The multi-criteria decision analysis (MCDA) methodology was used to identify four candidates for the second stage assessment. In stage two, a detailed evaluation was undertaken and two candidates C16-AO, and C11/15-sEO9, were found to be practical alternatives to TX-100 for use in protein therapeutic production processes for inactivating enveloped viruses. In addition, C13-EO8 demonstrated good viral inactivation capability and warrants further investigation in detergent clearance and impact on product quality.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"40 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28947","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Detergents are routinely included in protein purification processes to inactivate enveloped viruses that may arise from adventitious or endogenous contamination. The detergent Triton X-100 (TX-100) has been widely used as part of the production process for therapeutic proteins. However, recent ecological studies indicate that TX-100 and its metabolites detrimentally impact aquatic organisms, thus alternative detergents for viral inactivation are required. The overall aim of this study was to identify one or more detergents that are a suitable replacement for TX-100 in the viral inactivation step. In stage one, 16 potential alternatives were identified and screened against TX-100 using multiple criteria such as solubility, feasibility of virus inactivation, critical micelle concentration, and storage conditions. The multi-criteria decision analysis (MCDA) methodology was used to identify four candidates for the second stage assessment. In stage two, a detailed evaluation was undertaken and two candidates C16-AO, and C11/15-sEO9, were found to be practical alternatives to TX-100 for use in protein therapeutic production processes for inactivating enveloped viruses. In addition, C13-EO8 demonstrated good viral inactivation capability and warrants further investigation in detergent clearance and impact on product quality.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.