Intrusion Detection for Internet of Things: An Anchor Graph Clustering Approach

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Yixuan Wu;Long Zhang;Lin Yang;Feng Yang;Linru Ma;Zhoumin Lu;Wen Jiang
{"title":"Intrusion Detection for Internet of Things: An Anchor Graph Clustering Approach","authors":"Yixuan Wu;Long Zhang;Lin Yang;Feng Yang;Linru Ma;Zhoumin Lu;Wen Jiang","doi":"10.1109/TIFS.2025.3539100","DOIUrl":null,"url":null,"abstract":"Intrusion detection systems are a crucial technique for securing the Internet of Things (IoT) from malicious attacks. Additionally, due to the continuous emergence of new vulnerabilities and unknown attack types, only a small number of attack samples in the IoT environments can be captured for analysis. In this work, we introduce an anchor graph clustering (AGC) method for intrusion detection to address the challenge of limited labeled samples in the IoT environments. AGC initially transforms the raw data into the embedding space to obtain more representative anchors. Then, AGC unifies anchor graph construction, anchor graph learning, and graph clustering into a unified framework, solving the resulting optimization problem through an iterative solution algorithm. Finally, AGC leverages the powerful analytical capabilities of graph learning to achieve fine-grained classification of low-quality labels. Experimental results on both real and synthetic datasets confirm that AGC can identify intrusions with high precision, while also being time-efficient in detection.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1965-1980"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10873007/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Intrusion detection systems are a crucial technique for securing the Internet of Things (IoT) from malicious attacks. Additionally, due to the continuous emergence of new vulnerabilities and unknown attack types, only a small number of attack samples in the IoT environments can be captured for analysis. In this work, we introduce an anchor graph clustering (AGC) method for intrusion detection to address the challenge of limited labeled samples in the IoT environments. AGC initially transforms the raw data into the embedding space to obtain more representative anchors. Then, AGC unifies anchor graph construction, anchor graph learning, and graph clustering into a unified framework, solving the resulting optimization problem through an iterative solution algorithm. Finally, AGC leverages the powerful analytical capabilities of graph learning to achieve fine-grained classification of low-quality labels. Experimental results on both real and synthetic datasets confirm that AGC can identify intrusions with high precision, while also being time-efficient in detection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信