Enhancing Scalability of Quantum Eigenvalue Transformation of Unitary Matrices for Ground State Preparation through Adaptive Finer Filtering

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-02-06 DOI:10.22331/q-2025-02-06-1624
Erenay Karacan, Yanbin Chen, Christian B. Mendl
{"title":"Enhancing Scalability of Quantum Eigenvalue Transformation of Unitary Matrices for Ground State Preparation through Adaptive Finer Filtering","authors":"Erenay Karacan, Yanbin Chen, Christian B. Mendl","doi":"10.22331/q-2025-02-06-1624","DOIUrl":null,"url":null,"abstract":"Hamiltonian simulation is a domain where quantum computers have the potential to outperform their classical counterparts. One of the main challenges of such quantum algorithms is increasing the system size, which is necessary to achieve meaningful quantum advantage. In this work, we present an approach to improve the scalability of eigenspace filtering for the ground state preparation of a given Hamiltonian. Our method aims to tackle limitations introduced by a small spectral gap and high degeneracy of low energy states. It is based on an adaptive sequence of eigenspace filtering through Quantum Eigenvalue Transformation of Unitary Matrices (QETU) combined with spectrum profiling. By combining our proposed algorithm with state-of-the-art phase estimation methods, we achieved good approximations for the ground state energy with local, two-qubit gate depolarizing probability up to $10^{-4}$. To demonstrate the key results in this work, we ran simulations with the transverse-field Ising Model on classical computers using $\\texttt{Qiskit}$. We compare the performance of our approach with the static implementation of QETU and show that we can consistently achieve three to four orders of magnitude improvement in the absolute error rate.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"40 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-06-1624","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hamiltonian simulation is a domain where quantum computers have the potential to outperform their classical counterparts. One of the main challenges of such quantum algorithms is increasing the system size, which is necessary to achieve meaningful quantum advantage. In this work, we present an approach to improve the scalability of eigenspace filtering for the ground state preparation of a given Hamiltonian. Our method aims to tackle limitations introduced by a small spectral gap and high degeneracy of low energy states. It is based on an adaptive sequence of eigenspace filtering through Quantum Eigenvalue Transformation of Unitary Matrices (QETU) combined with spectrum profiling. By combining our proposed algorithm with state-of-the-art phase estimation methods, we achieved good approximations for the ground state energy with local, two-qubit gate depolarizing probability up to $10^{-4}$. To demonstrate the key results in this work, we ran simulations with the transverse-field Ising Model on classical computers using $\texttt{Qiskit}$. We compare the performance of our approach with the static implementation of QETU and show that we can consistently achieve three to four orders of magnitude improvement in the absolute error rate.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信