Hijacking of the nervous system in cancer: mechanism and therapeutic targets

IF 27.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yu Zhang, Qili Liao, Xuyang Wen, Jiayan Fan, Tifei Yuan, Xuemei Tong, Renbing Jia, Peiwei Chai, Xianqun Fan
{"title":"Hijacking of the nervous system in cancer: mechanism and therapeutic targets","authors":"Yu Zhang, Qili Liao, Xuyang Wen, Jiayan Fan, Tifei Yuan, Xuemei Tong, Renbing Jia, Peiwei Chai, Xianqun Fan","doi":"10.1186/s12943-025-02246-5","DOIUrl":null,"url":null,"abstract":"The activity of neurons in the vicinity of tumors is linked to a spectrum of cellular mechanisms, including the facilitation of tumor cell proliferation, synapse formation, angiogenesis, and macrophage polarization. This review consolidates the current understanding of neuro-oncological regulation, underscoring the nuanced interplay between neurological and oncological processes (termed as Cancer-Neuroscience). First, we elucidated how the nervous system accelerates tumor growth, metastasis, and the tumor microenvironment both directly and indirectly through the action of signaling molecules. Importantly, neural activity is also implicated in modulating the efficacy of therapeutic interventions, including immunotherapy. On the contrary, the nervous system potentially has a suppressive effect on tumorigenesis, further underscoring a dual-edged role of neurons in cancer progression. Consequently, targeting specific signaling molecules within neuro-oncological regulatory pathways could potentially suppress tumor development. Future research is poised to explore the intricate mechanisms governing neuro-tumor interactions more deeply, while concurrently refining treatment strategies for tumors by targeting the crosstalk between cancer and neurons.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"22 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02246-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The activity of neurons in the vicinity of tumors is linked to a spectrum of cellular mechanisms, including the facilitation of tumor cell proliferation, synapse formation, angiogenesis, and macrophage polarization. This review consolidates the current understanding of neuro-oncological regulation, underscoring the nuanced interplay between neurological and oncological processes (termed as Cancer-Neuroscience). First, we elucidated how the nervous system accelerates tumor growth, metastasis, and the tumor microenvironment both directly and indirectly through the action of signaling molecules. Importantly, neural activity is also implicated in modulating the efficacy of therapeutic interventions, including immunotherapy. On the contrary, the nervous system potentially has a suppressive effect on tumorigenesis, further underscoring a dual-edged role of neurons in cancer progression. Consequently, targeting specific signaling molecules within neuro-oncological regulatory pathways could potentially suppress tumor development. Future research is poised to explore the intricate mechanisms governing neuro-tumor interactions more deeply, while concurrently refining treatment strategies for tumors by targeting the crosstalk between cancer and neurons.
肿瘤附近神经元的活动与一系列细胞机制有关,包括促进肿瘤细胞增殖、突触形成、血管生成和巨噬细胞极化。这篇综述巩固了目前对神经-肿瘤调控的理解,强调了神经和肿瘤过程(称为 "癌症-神经科学")之间微妙的相互作用。首先,我们阐明了神经系统如何通过信号分子的作用直接或间接地加速肿瘤生长、转移和肿瘤微环境。重要的是,神经活动还与包括免疫疗法在内的治疗干预措施的疗效调节有关。相反,神经系统可能对肿瘤发生有抑制作用,这进一步强调了神经元在癌症进展中的双刃作用。因此,针对神经肿瘤调控通路中的特定信号分子可能会抑制肿瘤的发展。未来的研究有望更深入地探索神经与肿瘤相互作用的复杂机制,同时通过针对癌症与神经元之间的串扰来完善肿瘤治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer
Molecular Cancer 医学-生化与分子生物学
CiteScore
54.90
自引率
2.70%
发文量
224
审稿时长
2 months
期刊介绍: Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer. The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies. Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信