BackFillMe: An Energy and Performance Efficient Virtual Machine Scheduler for IaaS Datacenters

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Muhammad Zakarya;Lee Gillam;Mohammad Reza Chalak Qazani;Ayaz Ali Khan;Khaled Salah;Omer Rana
{"title":"BackFillMe: An Energy and Performance Efficient Virtual Machine Scheduler for IaaS Datacenters","authors":"Muhammad Zakarya;Lee Gillam;Mohammad Reza Chalak Qazani;Ayaz Ali Khan;Khaled Salah;Omer Rana","doi":"10.1109/TSC.2025.3539190","DOIUrl":null,"url":null,"abstract":"Backfilling refers to the practice of allowing small jobs to be completed ahead of schedule as long as they do not cause the first job in the line to wait. Users are expected to offer estimates of how long jobs will take to complete in order to make these decisions possible, and these projections are often based on historical data. However, predictions are very hard and may not be accurate, particularly in cloud computing scenarios where jobs or applications run on Virtual Machines (VMs). In addition, scheduling and consolidation techniques can improve the energy efficiency and performance of applications. Consolidation involves VM migrations that can have a negative impact on workload performance and users’ costs. Backfilling can be used as an alternative technique for consolidation (short-term) and/or can be used along with consolidation (long-term). Backfilling methods are well-utilised in single computing systems, but are relatively unexplored in cloud resource allocation. A backfilling-based resource allocation and consolidation technique is proposed. Using real workloads from the Google cluster traces, we investigate the impact of backfilling on infrastructure energy efficiency and performance. For 12583 heterogeneous servers and approximately three million jobs that belong to three different applications, we observed that approximately 19% energy savings and 6% workload performance improvements are achievable using the backfilling approach. Furthermore, our evaluation suggests that using VM runtime as a criterion for the backfilling approach is approximately 3.56%–7.78% more energy and 1.91%–3.38% more performance efficient than using priority as a backfilling criterion.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 2","pages":"660-672"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10874157/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Backfilling refers to the practice of allowing small jobs to be completed ahead of schedule as long as they do not cause the first job in the line to wait. Users are expected to offer estimates of how long jobs will take to complete in order to make these decisions possible, and these projections are often based on historical data. However, predictions are very hard and may not be accurate, particularly in cloud computing scenarios where jobs or applications run on Virtual Machines (VMs). In addition, scheduling and consolidation techniques can improve the energy efficiency and performance of applications. Consolidation involves VM migrations that can have a negative impact on workload performance and users’ costs. Backfilling can be used as an alternative technique for consolidation (short-term) and/or can be used along with consolidation (long-term). Backfilling methods are well-utilised in single computing systems, but are relatively unexplored in cloud resource allocation. A backfilling-based resource allocation and consolidation technique is proposed. Using real workloads from the Google cluster traces, we investigate the impact of backfilling on infrastructure energy efficiency and performance. For 12583 heterogeneous servers and approximately three million jobs that belong to three different applications, we observed that approximately 19% energy savings and 6% workload performance improvements are achievable using the backfilling approach. Furthermore, our evaluation suggests that using VM runtime as a criterion for the backfilling approach is approximately 3.56%–7.78% more energy and 1.91%–3.38% more performance efficient than using priority as a backfilling criterion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Services Computing
IEEE Transactions on Services Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
11.50
自引率
6.20%
发文量
278
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信