A novel cross-modal data augmentation method based on contrastive unpaired translation network for kidney segmentation in ultrasound imaging.

Medical physics Pub Date : 2025-02-04 DOI:10.1002/mp.17663
Shuaizi Guo, Xiangyu Sheng, Haijie Chen, Jie Zhang, Qinmu Peng, Menglin Wu, Katherine Fischer, Gregory E Tasian, Yong Fan, Shi Yin
{"title":"A novel cross-modal data augmentation method based on contrastive unpaired translation network for kidney segmentation in ultrasound imaging.","authors":"Shuaizi Guo, Xiangyu Sheng, Haijie Chen, Jie Zhang, Qinmu Peng, Menglin Wu, Katherine Fischer, Gregory E Tasian, Yong Fan, Shi Yin","doi":"10.1002/mp.17663","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Kidney ultrasound (US) image segmentation is one of the key steps in computer-aided diagnosis and treatment planning of kidney diseases. Recently, deep learning (DL) technology has demonstrated promising prospects in automatic kidney US segmentation. However, due to the poor quality, particularly the weak boundaries in kidney US imaging, obtaining accurate annotations for DL-based segmentation methods remain a challenging and time-consuming task. This issue can hinder the application of data-hungry deep learning methods.</p><p><strong>Purpose: </strong>In this paper, we explore a novel cross-modal data augmentation method aimed at enhancing the performance of DL-based segmentation networks on the limited labeled kidney US dataset.</p><p><strong>Methods: </strong>In particular, we adopt a novel method based on contrastive unpaired translation network (CUT) to obtain simulated labeled kidney US images at a low cost from labeled abdomen computed tomography (CT) data and unlabeled kidney US images. To effectively improve the segmentation network performance, we propose an instance-weighting training strategy that simultaneously captures useful information from both the simulated and real labeled kidney US images. We trained our generative networks on a dataset comprising 4418 labeled CT slices and 4594 unlabeled US images. For segmentation network, we used a dataset consisting of 4594 simulated and 100 real kidney US images for training, 20 images for validation, and 169 real images for testing. We compared the performance of our method to several state-of-the-art approaches using the Wilcoxon signed-rank test, and applied the Bonferroni method for multiple comparison correction.</p><p><strong>Results: </strong>The experimental results show that we can synthesize accurate labeled kidney US images with a Fréchet inception distance of 52.52. Moreover, the proposed method achieves a segmentation accuracy of 0.9360 ± 0.0398 for U-Net on normal kidney US images, and 0.7719 ± 0.2449 on the abnormal dataset, as measured by the dice similarity coefficient. When compared to other training strategies, the proposed method demonstrated statistically significant superiority, with all p-values being less than 0.01.</p><p><strong>Conclusions: </strong>The proposed method can effectively improve the accuracy and generalization ability of kidney US image segmentation models with limited annotated training data.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Kidney ultrasound (US) image segmentation is one of the key steps in computer-aided diagnosis and treatment planning of kidney diseases. Recently, deep learning (DL) technology has demonstrated promising prospects in automatic kidney US segmentation. However, due to the poor quality, particularly the weak boundaries in kidney US imaging, obtaining accurate annotations for DL-based segmentation methods remain a challenging and time-consuming task. This issue can hinder the application of data-hungry deep learning methods.

Purpose: In this paper, we explore a novel cross-modal data augmentation method aimed at enhancing the performance of DL-based segmentation networks on the limited labeled kidney US dataset.

Methods: In particular, we adopt a novel method based on contrastive unpaired translation network (CUT) to obtain simulated labeled kidney US images at a low cost from labeled abdomen computed tomography (CT) data and unlabeled kidney US images. To effectively improve the segmentation network performance, we propose an instance-weighting training strategy that simultaneously captures useful information from both the simulated and real labeled kidney US images. We trained our generative networks on a dataset comprising 4418 labeled CT slices and 4594 unlabeled US images. For segmentation network, we used a dataset consisting of 4594 simulated and 100 real kidney US images for training, 20 images for validation, and 169 real images for testing. We compared the performance of our method to several state-of-the-art approaches using the Wilcoxon signed-rank test, and applied the Bonferroni method for multiple comparison correction.

Results: The experimental results show that we can synthesize accurate labeled kidney US images with a Fréchet inception distance of 52.52. Moreover, the proposed method achieves a segmentation accuracy of 0.9360 ± 0.0398 for U-Net on normal kidney US images, and 0.7719 ± 0.2449 on the abnormal dataset, as measured by the dice similarity coefficient. When compared to other training strategies, the proposed method demonstrated statistically significant superiority, with all p-values being less than 0.01.

Conclusions: The proposed method can effectively improve the accuracy and generalization ability of kidney US image segmentation models with limited annotated training data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信