Automated acoustic voice screening techniques for comorbid depression and anxiety disorders.

IF 1.2 Q3 ACOUSTICS
Mary Pietrowicz, Kaci Cunningham, Dylan J Thompson, Fiona Gruzmark, Alexis Reinders, Anna Ford, Sonia Pulido, Carmen Calhoun, Milon Hutchinson, Victor Javier Medina, Ryan Finkenbine, Sarah E Donohue
{"title":"Automated acoustic voice screening techniques for comorbid depression and anxiety disorders.","authors":"Mary Pietrowicz, Kaci Cunningham, Dylan J Thompson, Fiona Gruzmark, Alexis Reinders, Anna Ford, Sonia Pulido, Carmen Calhoun, Milon Hutchinson, Victor Javier Medina, Ryan Finkenbine, Sarah E Donohue","doi":"10.1121/10.0034851","DOIUrl":null,"url":null,"abstract":"<p><p>Anxiety disorders (AD) and major depressive disorders (MDD) are growing in prevalence, yet many people suffering from these disorders remain undiagnosed due to known perceptual, attitudinal, and structural barriers. Methods, tools, and technologies that can overcome these barriers and improve screening rates are needed. Tools based on automated analysis of acoustic voice could help bridge this gap. Comorbid AD/MDD presents additional challenges since some effects of AD and MDD oppose one another. Here, acoustic models that use acoustic and phonemic data from verbal fluency tests to discern the presence of comorbid AD/MDD are presented, with the best results of F1 = 0.83.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0034851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Anxiety disorders (AD) and major depressive disorders (MDD) are growing in prevalence, yet many people suffering from these disorders remain undiagnosed due to known perceptual, attitudinal, and structural barriers. Methods, tools, and technologies that can overcome these barriers and improve screening rates are needed. Tools based on automated analysis of acoustic voice could help bridge this gap. Comorbid AD/MDD presents additional challenges since some effects of AD and MDD oppose one another. Here, acoustic models that use acoustic and phonemic data from verbal fluency tests to discern the presence of comorbid AD/MDD are presented, with the best results of F1 = 0.83.

针对合并抑郁症和焦虑症的自动声音筛查技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信