Machine Learning-Based CT Radiomics Model to Predict the Risk of Hip Fragility Fracture.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Jinglei Yuan, Bing Li, Chu Zhang, Jing Wang, Bingsheng Huang, Liheng Ma
{"title":"Machine Learning-Based CT Radiomics Model to Predict the Risk of Hip Fragility Fracture.","authors":"Jinglei Yuan, Bing Li, Chu Zhang, Jing Wang, Bingsheng Huang, Liheng Ma","doi":"10.1016/j.acra.2025.01.023","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>This research aimed to develop a combined model based on proximal femur attenuation values and radiomics features at routine CT to predict hip fragility fracture using machine learning methods.</p><p><strong>Method: </strong>A total of 254 patients (training cohort, n=132; test cohort 1, n=56;test cohort 2, n=66) who underwent hip or pelvic CT scans were included. Three different machine learning methods were used to build the Support Vector Machine (SVM) model, Logistic Regression (LR) model and Random Forest (RF) model respectively. The method that exhibited the best performance in the training cohort and test cohort 1 was selected to represent the radiomics model for subsequent studies. The mean CT Hounsfield unit of three-dimensional CT images at the proximal femur was extracted to construct the mean CTHU model. Multivariate logistic regression was performed using mean CT Hounsfield unit together with radiomics features, and the combined model was subsequently developed with a visualized nomogram.</p><p><strong>Results: </strong>Among the radiomics models based on three machine learning methods, the LR model showed the best performance in the training cohort (AUC=0.875, 95% CI=0.806-0.926) and in the test cohort 1 (AUC=0.851, 95% CI=0.730-0.932). Compared to the mean CT model and the LR model, the combined model showed superior discriminatory power in the training cohort (AUC=0.934, 95% CI=0.895-0.972), the test cohort 1 (AUC=0.893, 95% CI=0.812-0.974) and the test cohort 2 (AUC=0.851, 95% CI=0.742-0.927).</p><p><strong>Conclusion: </strong>The combined model, based on the mean CT Hounsfield unit of the proximal femur and radiomics features, can provide an accurate quantitative imaging basis for individualized risk prediction of hip fragility fracture.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.01.023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale and objectives: This research aimed to develop a combined model based on proximal femur attenuation values and radiomics features at routine CT to predict hip fragility fracture using machine learning methods.

Method: A total of 254 patients (training cohort, n=132; test cohort 1, n=56;test cohort 2, n=66) who underwent hip or pelvic CT scans were included. Three different machine learning methods were used to build the Support Vector Machine (SVM) model, Logistic Regression (LR) model and Random Forest (RF) model respectively. The method that exhibited the best performance in the training cohort and test cohort 1 was selected to represent the radiomics model for subsequent studies. The mean CT Hounsfield unit of three-dimensional CT images at the proximal femur was extracted to construct the mean CTHU model. Multivariate logistic regression was performed using mean CT Hounsfield unit together with radiomics features, and the combined model was subsequently developed with a visualized nomogram.

Results: Among the radiomics models based on three machine learning methods, the LR model showed the best performance in the training cohort (AUC=0.875, 95% CI=0.806-0.926) and in the test cohort 1 (AUC=0.851, 95% CI=0.730-0.932). Compared to the mean CT model and the LR model, the combined model showed superior discriminatory power in the training cohort (AUC=0.934, 95% CI=0.895-0.972), the test cohort 1 (AUC=0.893, 95% CI=0.812-0.974) and the test cohort 2 (AUC=0.851, 95% CI=0.742-0.927).

Conclusion: The combined model, based on the mean CT Hounsfield unit of the proximal femur and radiomics features, can provide an accurate quantitative imaging basis for individualized risk prediction of hip fragility fracture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信