Subash Khadka, Brandon Lukas, Claire Xin Sun, Sribalashubashini Muralimanoharan, Karthigayan Shanmugasundaram, Azad Khosh, Lindsey Barron, Claire Schenken, Nicholas Stansbury, Robert Schenken, Ron Firestein, Yang Dai, Thomas G Boyer
{"title":"Mediator kinase inhibition drives myometrial stem cell differentiation and the uterine fibroid phenotype through super-enhancer reprogramming.","authors":"Subash Khadka, Brandon Lukas, Claire Xin Sun, Sribalashubashini Muralimanoharan, Karthigayan Shanmugasundaram, Azad Khosh, Lindsey Barron, Claire Schenken, Nicholas Stansbury, Robert Schenken, Ron Firestein, Yang Dai, Thomas G Boyer","doi":"10.1007/s00109-025-02517-0","DOIUrl":null,"url":null,"abstract":"<p><p>Uterine fibroids (UFs) are the most common non-cutaneous tumors in women worldwide. UFs arise from genetic alterations in myometrial stem cells (MM SCs) that trigger their transformation into tumor-initiating cells (UF SCs). Mutations in the RNA polymerase II Mediator subunit MED12 are dominant drivers of UFs, accounting for 70% of these clinically significant lesions. Biochemically, UF driver mutations in MED12 disrupt CDK8/19 kinase activity in Mediator, but how Mediator kinase disruption triggers MM SC transformation remains unknown. Here, we show that pharmacologic inhibition of CDK8/19 in MM SCs removes a barrier to myogenic differentiation down an altered pathway characterized by molecular phenotypes characteristic of UFs, including oncogenic growth and extracellular matrix (ECM) production. These perturbations appear to be induced by transcriptomic changes, arising in part through epigenomic alteration and super-enhancer reprogramming, that broadly recapitulate those found in MED12-mutant UFs. Altogether, these findings provide new insights concerning the biological role of CDK8/19 in MM SC biology and UF formation. KEY MESSAGES: Mediator kinase inhibition in myometrial stem cells (MM SCs) induces spontaneous differentiation. Transcriptional changes upon Mediator kinase inhibition recapitulate those of MED12 mutant uterine fibroids (UFs). Such transcriptional changes are partially mediated by super-enhancer reprogramming. Mediator kinase functions to enforce cell states and its loss induces cellular plasticity.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"311-326"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02517-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Uterine fibroids (UFs) are the most common non-cutaneous tumors in women worldwide. UFs arise from genetic alterations in myometrial stem cells (MM SCs) that trigger their transformation into tumor-initiating cells (UF SCs). Mutations in the RNA polymerase II Mediator subunit MED12 are dominant drivers of UFs, accounting for 70% of these clinically significant lesions. Biochemically, UF driver mutations in MED12 disrupt CDK8/19 kinase activity in Mediator, but how Mediator kinase disruption triggers MM SC transformation remains unknown. Here, we show that pharmacologic inhibition of CDK8/19 in MM SCs removes a barrier to myogenic differentiation down an altered pathway characterized by molecular phenotypes characteristic of UFs, including oncogenic growth and extracellular matrix (ECM) production. These perturbations appear to be induced by transcriptomic changes, arising in part through epigenomic alteration and super-enhancer reprogramming, that broadly recapitulate those found in MED12-mutant UFs. Altogether, these findings provide new insights concerning the biological role of CDK8/19 in MM SC biology and UF formation. KEY MESSAGES: Mediator kinase inhibition in myometrial stem cells (MM SCs) induces spontaneous differentiation. Transcriptional changes upon Mediator kinase inhibition recapitulate those of MED12 mutant uterine fibroids (UFs). Such transcriptional changes are partially mediated by super-enhancer reprogramming. Mediator kinase functions to enforce cell states and its loss induces cellular plasticity.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.