Class-aware multi-level attention learning for semi-supervised breast cancer diagnosis under imbalanced label distribution.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Renjun Wen, Yufei Ma, Changdong Liu, Renwei Feng
{"title":"Class-aware multi-level attention learning for semi-supervised breast cancer diagnosis under imbalanced label distribution.","authors":"Renjun Wen, Yufei Ma, Changdong Liu, Renwei Feng","doi":"10.1007/s11517-025-03291-4","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer affects a significant number of patients worldwide, and early diagnosis is critical for improving cure rates and prognosis. Deep learning-based breast cancer classification algorithms have substantially alleviated the burden on medical personnel. However, existing breast cancer diagnosis models face notable limitations which are challenging to obtain in clinical settings, such as reliance on a large volume of labeled samples, an inability to comprehensively extract features from breast cancer images, and susceptibility to overfitting on account of imbalanced class distribution. Therefore, we propose the class-aware multi-level attention learning model focused on semi-supervised breast cancer diagnosis to effectively reduce the dependency on extensive data annotation. Additionally, we develop the multi-level fusion attention learning module, which integrates multiple mutual attention components across different layers, allowing the model to precisely identify critical regions for lesion categorization. Finally, we design the class-aware adaptive pseudo-labeling module which adaptively predicts category distribution in unlabeled data, and directs the model to focus on underrepresented categories, ensuring a balanced learning process. Experimental results on the BACH dataset demonstrate that our proposed model achieves an accuracy of 86.7% with only 40% labeled microscopic data, showcasing its outstanding contribution to semi-supervised breast cancer diagnosis.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03291-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer affects a significant number of patients worldwide, and early diagnosis is critical for improving cure rates and prognosis. Deep learning-based breast cancer classification algorithms have substantially alleviated the burden on medical personnel. However, existing breast cancer diagnosis models face notable limitations which are challenging to obtain in clinical settings, such as reliance on a large volume of labeled samples, an inability to comprehensively extract features from breast cancer images, and susceptibility to overfitting on account of imbalanced class distribution. Therefore, we propose the class-aware multi-level attention learning model focused on semi-supervised breast cancer diagnosis to effectively reduce the dependency on extensive data annotation. Additionally, we develop the multi-level fusion attention learning module, which integrates multiple mutual attention components across different layers, allowing the model to precisely identify critical regions for lesion categorization. Finally, we design the class-aware adaptive pseudo-labeling module which adaptively predicts category distribution in unlabeled data, and directs the model to focus on underrepresented categories, ensuring a balanced learning process. Experimental results on the BACH dataset demonstrate that our proposed model achieves an accuracy of 86.7% with only 40% labeled microscopic data, showcasing its outstanding contribution to semi-supervised breast cancer diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信