Targeting CXCL8 signaling sensitizes HNSCC to anlotinib by reducing tumor-associated macrophage-derived CLU.

IF 11.4 1区 医学 Q1 ONCOLOGY
Xin Hu, Yikang Ji, Mi Zhang, Zhihui Li, Xinhua Pan, Zhen Zhang, Xu Wang
{"title":"Targeting CXCL8 signaling sensitizes HNSCC to anlotinib by reducing tumor-associated macrophage-derived CLU.","authors":"Xin Hu, Yikang Ji, Mi Zhang, Zhihui Li, Xinhua Pan, Zhen Zhang, Xu Wang","doi":"10.1186/s13046-025-03298-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although nutrition-starvation therapy for malignancies such as HNSCC is highly desirable, the clinical outcomes remain disappointing. Understanding the spatial heterogeneity of glucose deficiency can reveal the molecular mechanisms regulating cancer metabolism and identify therapeutic targets to improve effective nutrient-starvation therapies.</p><p><strong>Methods: </strong>Multiple omics data from RNA-seq, proteomics and spatial transcriptome analyses of HNSCC samples were integrated to analyze the spatial heterogeneity of glucose deficiency. In vivo and in vitro CXCL8 and CLU expression levels in tumor cells were determined using qPCR, immunohistochemistry and ELISA. The ability of CLU from TAMs to respond to tumor-derived CXCL8 was assessed using RNA sequencing, siRNA silencing, immunofluorescence and CCK-8 assays. A mouse subcutaneous xenograft model was used to assess the outcomes of nutrition-starvation therapy combined with blockade of CXCL8 signaling.</p><p><strong>Results: </strong>A set of genes that was significantly upregulated in HNSCC under conditions of glucose deficiency was identified using integrating multiple omics data analyses. The upregulated gene set was used to determine the glucose-deficient area according to transcriptome data of HNSCC, and CXCL8 was one of the most highly upregulated genes. The levels of both CXCL8 mRNA and its protein IL-8 in cancer cells under conditions of glucose deficiency were increased in an NF-κB-dependent manner. Supplementary IL-8 stimulated TAMs to synthesize CLU, and CLU counteracted oxidative stress in HNSCC cells under conditions of glucose deficiency. Moreover, pharmacological blockade of CXCL8 signaling (reparixin) sensitized HNSCC cells to nutrient-starvation therapy (anlotinib) in two xenograft models.</p><p><strong>Conclusion: </strong>Our results provide novel evidence of a feedback loop between cancer cells and TAMs in glucose-deficient regions. HNSCC-derived CXCL8 favors endogenous antioxidative processes and confers therapeutic resistance to nutrient-starvation therapies in HNSCC.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"39"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03298-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Although nutrition-starvation therapy for malignancies such as HNSCC is highly desirable, the clinical outcomes remain disappointing. Understanding the spatial heterogeneity of glucose deficiency can reveal the molecular mechanisms regulating cancer metabolism and identify therapeutic targets to improve effective nutrient-starvation therapies.

Methods: Multiple omics data from RNA-seq, proteomics and spatial transcriptome analyses of HNSCC samples were integrated to analyze the spatial heterogeneity of glucose deficiency. In vivo and in vitro CXCL8 and CLU expression levels in tumor cells were determined using qPCR, immunohistochemistry and ELISA. The ability of CLU from TAMs to respond to tumor-derived CXCL8 was assessed using RNA sequencing, siRNA silencing, immunofluorescence and CCK-8 assays. A mouse subcutaneous xenograft model was used to assess the outcomes of nutrition-starvation therapy combined with blockade of CXCL8 signaling.

Results: A set of genes that was significantly upregulated in HNSCC under conditions of glucose deficiency was identified using integrating multiple omics data analyses. The upregulated gene set was used to determine the glucose-deficient area according to transcriptome data of HNSCC, and CXCL8 was one of the most highly upregulated genes. The levels of both CXCL8 mRNA and its protein IL-8 in cancer cells under conditions of glucose deficiency were increased in an NF-κB-dependent manner. Supplementary IL-8 stimulated TAMs to synthesize CLU, and CLU counteracted oxidative stress in HNSCC cells under conditions of glucose deficiency. Moreover, pharmacological blockade of CXCL8 signaling (reparixin) sensitized HNSCC cells to nutrient-starvation therapy (anlotinib) in two xenograft models.

Conclusion: Our results provide novel evidence of a feedback loop between cancer cells and TAMs in glucose-deficient regions. HNSCC-derived CXCL8 favors endogenous antioxidative processes and confers therapeutic resistance to nutrient-starvation therapies in HNSCC.

通过减少肿瘤相关巨噬细胞衍生的CLU,靶向CXCL8信号可使HNSCC对安罗替尼敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信