Selection on the vascular-remodeling BMPER gene is associated with altitudinal adaptation in an insular lizard.

IF 3.7 1区 生物学 Q2 EVOLUTIONARY BIOLOGY
Evolution Letters Pub Date : 2024-09-22 eCollection Date: 2025-02-01 DOI:10.1093/evlett/qrae047
Nina Serén, Catarina Pinho, Rodrigo Megía-Palma, Prem Aguilar, Anamarija Žagar, Pedro Andrade, Miguel A Carretero
{"title":"Selection on the vascular-remodeling <i>BMPER</i> gene is associated with altitudinal adaptation in an insular lizard.","authors":"Nina Serén, Catarina Pinho, Rodrigo Megía-Palma, Prem Aguilar, Anamarija Žagar, Pedro Andrade, Miguel A Carretero","doi":"10.1093/evlett/qrae047","DOIUrl":null,"url":null,"abstract":"<p><p>High altitude imposes several extreme constraints on life, such as low oxygen pressure and high levels of ultraviolet radiation, which require specialized adaptations. Many studies have focused on how endothermic vertebrates respond to these challenging environments, but there is still uncertainty on how ectotherms adapt to these conditions. Here, we used whole-genome sequencing of low-altitude (100-600 m) and high-altitude (3,550 m) populations of the wide-ranging Tenerife lizard <i>Gallotia galloti</i> to uncover signatures of selection for altitudinal adaptation. The studied populations show reduced differentiation, sharing similar patterns of genetic variation. Selective sweep mapping suggests that signatures of adaptation to high altitude are not widespread across the genome, clustering in a relatively small number of genomic regions. One of these regions contains <i>BMPER</i>, a gene involved with vascular remodeling, and that has been associated with hypoxia-induced angiogenic response. By genotyping samples across 2 altitudinal transects, we show that allele frequency changes at this locus are not gradual, but rather show a well-defined shift above ca. 1,900 m. Transcript and protein structure analyses on this gene suggest that putative selection likely acts on noncoding variation. These results underline how low oxygen pressure generates the most consistent selective constraint in high-altitude environments, to which vertebrates with vastly contrasting physiological profiles need to adapt in the context of ongoing climate change.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 1","pages":"41-50"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae047","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High altitude imposes several extreme constraints on life, such as low oxygen pressure and high levels of ultraviolet radiation, which require specialized adaptations. Many studies have focused on how endothermic vertebrates respond to these challenging environments, but there is still uncertainty on how ectotherms adapt to these conditions. Here, we used whole-genome sequencing of low-altitude (100-600 m) and high-altitude (3,550 m) populations of the wide-ranging Tenerife lizard Gallotia galloti to uncover signatures of selection for altitudinal adaptation. The studied populations show reduced differentiation, sharing similar patterns of genetic variation. Selective sweep mapping suggests that signatures of adaptation to high altitude are not widespread across the genome, clustering in a relatively small number of genomic regions. One of these regions contains BMPER, a gene involved with vascular remodeling, and that has been associated with hypoxia-induced angiogenic response. By genotyping samples across 2 altitudinal transects, we show that allele frequency changes at this locus are not gradual, but rather show a well-defined shift above ca. 1,900 m. Transcript and protein structure analyses on this gene suggest that putative selection likely acts on noncoding variation. These results underline how low oxygen pressure generates the most consistent selective constraint in high-altitude environments, to which vertebrates with vastly contrasting physiological profiles need to adapt in the context of ongoing climate change.

血管重塑 BMPER 基因的选择与海岛蜥蜴的海拔适应有关。
高海拔给生命带来了一些极端的限制,比如低氧压力和高水平的紫外线辐射,这些都需要专门的适应。许多研究集中在吸热脊椎动物如何应对这些具有挑战性的环境,但对于变温动物如何适应这些条件仍然存在不确定性。在这里,我们使用了低海拔(100-600米)和高海拔(3550米)的特内里费岛蜥蜴加洛蒂亚的全基因组测序,以揭示海拔适应的选择特征。所研究的种群分化程度较低,具有相似的遗传变异模式。选择性扫描图谱表明,适应高海拔的特征并没有在整个基因组中广泛存在,而是聚集在相对较少的基因组区域。其中一个区域包含BMPER,这是一种参与血管重塑的基因,与缺氧诱导的血管生成反应有关。通过对2个垂直样带的样本进行基因分型,我们发现该位点的等位基因频率变化不是渐进的,而是在约1,900 m以上表现出明确的变化。对该基因的转录和蛋白质结构分析表明,假定的选择可能对非编码变异起作用。这些结果强调了低氧压力如何在高海拔环境中产生最一致的选择性约束,在持续的气候变化背景下,生理特征截然不同的脊椎动物需要适应这种环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信