Machine learning techniques for predicting neurodevelopmental impairments in premature infants: a systematic review.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-01-20 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1481338
Arantxa Ortega-Leon, Daniel Urda, Ignacio J Turias, Simón P Lubián-López, Isabel Benavente-Fernández
{"title":"Machine learning techniques for predicting neurodevelopmental impairments in premature infants: a systematic review.","authors":"Arantxa Ortega-Leon, Daniel Urda, Ignacio J Turias, Simón P Lubián-López, Isabel Benavente-Fernández","doi":"10.3389/frai.2025.1481338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Very preterm infants are highly susceptible to Neurodevelopmental Impairments (NDIs), including cognitive, motor, and language deficits. This paper presents a systematic review of the application of Machine Learning (ML) techniques to predict NDIs in premature infants.</p><p><strong>Methods: </strong>This review presents a comparative analysis of existing studies from January 2018 to December 2023, highlighting their strengths, limitations, and future research directions.</p><p><strong>Results: </strong>We identified 26 studies that fulfilled the inclusion criteria. In addition, we explore the potential of ML algorithms and discuss commonly used data sources, including clinical and neuroimaging data. Furthermore, the inclusion of omics data as a contemporary approach employed, in other diagnostic contexts is proposed.</p><p><strong>Conclusions: </strong>We identified limitations and emphasized the significance of employing multimodal data models and explored various alternatives to address the limitations identified in the reviewed studies. The insights derived from this review guide researchers and clinicians toward improving early identification and intervention strategies for NDIs in this vulnerable population.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1481338"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1481338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Very preterm infants are highly susceptible to Neurodevelopmental Impairments (NDIs), including cognitive, motor, and language deficits. This paper presents a systematic review of the application of Machine Learning (ML) techniques to predict NDIs in premature infants.

Methods: This review presents a comparative analysis of existing studies from January 2018 to December 2023, highlighting their strengths, limitations, and future research directions.

Results: We identified 26 studies that fulfilled the inclusion criteria. In addition, we explore the potential of ML algorithms and discuss commonly used data sources, including clinical and neuroimaging data. Furthermore, the inclusion of omics data as a contemporary approach employed, in other diagnostic contexts is proposed.

Conclusions: We identified limitations and emphasized the significance of employing multimodal data models and explored various alternatives to address the limitations identified in the reviewed studies. The insights derived from this review guide researchers and clinicians toward improving early identification and intervention strategies for NDIs in this vulnerable population.

预测早产儿神经发育障碍的机器学习技术:系统综述。
背景和目的:极早产儿极易出现神经发育障碍(NDI),包括认知、运动和语言障碍。本文对机器学习(ML)技术在预测早产儿神经发育障碍方面的应用进行了系统综述:本综述对 2018 年 1 月至 2023 年 12 月期间的现有研究进行了比较分析,突出强调了这些研究的优势、局限性和未来研究方向:我们确定了 26 项符合纳入标准的研究。此外,我们还探索了 ML 算法的潜力,并讨论了常用的数据源,包括临床和神经影像数据。此外,我们还建议将omics数据作为一种现代方法纳入其他诊断范畴:我们发现了局限性,强调了采用多模态数据模型的重要性,并探讨了各种替代方法,以解决综述研究中发现的局限性。从本综述中得出的见解将指导研究人员和临床医生改进对这一弱势群体的非传染性疾病的早期识别和干预策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信