Does metabolic rate influence genome-wide amino acid composition in the course of animal evolution?

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY
Evolution Letters Pub Date : 2024-11-08 eCollection Date: 2025-02-01 DOI:10.1093/evlett/qrae061
Wei Wang, De-Xing Zhang
{"title":"Does metabolic rate influence genome-wide amino acid composition in the course of animal evolution?","authors":"Wei Wang, De-Xing Zhang","doi":"10.1093/evlett/qrae061","DOIUrl":null,"url":null,"abstract":"<p><p>Natural selection is believed to shape amino acid usage of the proteome by minimizing the energy cost of protein biosynthesis. Although this hypothesis explains well the amino acid frequency (AA<sub>frequency</sub>) difference among the 20 common amino acids within a given genome (species), whether it is applicable to cross-species difference remains to be inspected. Here, we proposed and tested a \"metabolic rate hypothesis,\" which suggests that metabolic rate impacts genome-wide AA<sub>frequency</sub>, considering that the energy allocated to protein biosynthesis is under selection pressure due to metabolic rate constraint. We performed integrated phylogenetic comparative analyses on proteomic sequence and metabolic rate data of 166 species covering 130 eumetazoan orders. We showed that resting metabolic rate (RMR) was significantly linked to AA<sub>frequency</sub> variation across animal lineages, with a contribution comparable to or greater than genomic traits such as GC content and codon usage bias. Consistent with the metabolic rate hypothesis, low-energy-cost amino acids are observed to be more likely at higher frequency in animal species with high (residual) metabolic rate. Correlated evolution of RMR and AA<sub>frequency</sub> was further inferred being driven by adaptation. The relationship between RMR and AA<sub>frequency</sub> varied greatly among amino acids, most likely reflecting a trade-off among various interacting factors. Overall, there exists no \"one-size-fits-all\" predictor for AA<sub>frequency</sub>, and integrated investigation of multilevel traits is indispensable for a fuller understanding of AA<sub>frequency</sub> variation and evolution in animal.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 1","pages":"137-149"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae061","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Natural selection is believed to shape amino acid usage of the proteome by minimizing the energy cost of protein biosynthesis. Although this hypothesis explains well the amino acid frequency (AAfrequency) difference among the 20 common amino acids within a given genome (species), whether it is applicable to cross-species difference remains to be inspected. Here, we proposed and tested a "metabolic rate hypothesis," which suggests that metabolic rate impacts genome-wide AAfrequency, considering that the energy allocated to protein biosynthesis is under selection pressure due to metabolic rate constraint. We performed integrated phylogenetic comparative analyses on proteomic sequence and metabolic rate data of 166 species covering 130 eumetazoan orders. We showed that resting metabolic rate (RMR) was significantly linked to AAfrequency variation across animal lineages, with a contribution comparable to or greater than genomic traits such as GC content and codon usage bias. Consistent with the metabolic rate hypothesis, low-energy-cost amino acids are observed to be more likely at higher frequency in animal species with high (residual) metabolic rate. Correlated evolution of RMR and AAfrequency was further inferred being driven by adaptation. The relationship between RMR and AAfrequency varied greatly among amino acids, most likely reflecting a trade-off among various interacting factors. Overall, there exists no "one-size-fits-all" predictor for AAfrequency, and integrated investigation of multilevel traits is indispensable for a fuller understanding of AAfrequency variation and evolution in animal.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信