Structure simulation-based comparison of active site variations in fungal ornithine decarboxylases.

Q2 Agricultural and Biological Sciences
Communicative and Integrative Biology Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.1080/19420889.2025.2458872
Min Jeong Kim, Jeong Ho Chang
{"title":"Structure simulation-based comparison of active site variations in fungal ornithine decarboxylases.","authors":"Min Jeong Kim, Jeong Ho Chang","doi":"10.1080/19420889.2025.2458872","DOIUrl":null,"url":null,"abstract":"<p><p>Polyamines play crucial roles in various biological processes, including cell proliferation and differentiation, immune response modulation, and signal transduction. Ornithine decarboxylase (ODC) initiates polyamine biosynthesis by catalyzing the conversion of ornithine to putrescine in a pyridoxal phosphate (PLP)-dependent manner. While the structures of mammalian and protozoan ODCs have been elucidated, fungal ODCs remain uncharacterized. In this study, AlphaFold2 was employed to simulate the structures of ODCs from four fungi: <i>Kluyveromyces lactis</i>, <i>Candida albicans</i>, <i>Debaryomyces hansenii</i>, and <i>Schizosaccharomyces pombe</i>. The results indicated that, although these ODCs share α/β-barrel and β-sheet domains, their active site conformations exhibit subtle differences. Additionally, substrate selectivity among ODCs and related decarboxylases varied depending on the distance between the Cα of aspartate or glutamate residues within the specificity helix and the C4α of PLP. Notably, the bacterial <i>Campylobacter jejuni</i> decarboxylase (<i>Cj</i>CANSDC), which binds the largest substrate, exhibits the longest distance, whereas fungal ODC, which binds the smallest substrate, displays the shortest distance. Furthermore, significant differences in the composition of amino acid residues within the active sites were also observed. This study provides insights into the structural diversity and catalytic activity of ODCs across a broad range of organisms, advancing the understanding of structure-dependent evolutionary processes.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"18 1","pages":"2458872"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communicative and Integrative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19420889.2025.2458872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Polyamines play crucial roles in various biological processes, including cell proliferation and differentiation, immune response modulation, and signal transduction. Ornithine decarboxylase (ODC) initiates polyamine biosynthesis by catalyzing the conversion of ornithine to putrescine in a pyridoxal phosphate (PLP)-dependent manner. While the structures of mammalian and protozoan ODCs have been elucidated, fungal ODCs remain uncharacterized. In this study, AlphaFold2 was employed to simulate the structures of ODCs from four fungi: Kluyveromyces lactis, Candida albicans, Debaryomyces hansenii, and Schizosaccharomyces pombe. The results indicated that, although these ODCs share α/β-barrel and β-sheet domains, their active site conformations exhibit subtle differences. Additionally, substrate selectivity among ODCs and related decarboxylases varied depending on the distance between the Cα of aspartate or glutamate residues within the specificity helix and the C4α of PLP. Notably, the bacterial Campylobacter jejuni decarboxylase (CjCANSDC), which binds the largest substrate, exhibits the longest distance, whereas fungal ODC, which binds the smallest substrate, displays the shortest distance. Furthermore, significant differences in the composition of amino acid residues within the active sites were also observed. This study provides insights into the structural diversity and catalytic activity of ODCs across a broad range of organisms, advancing the understanding of structure-dependent evolutionary processes.

真菌鸟氨酸脱羧酶活性位点变化的结构模拟比较。
多胺在细胞增殖和分化、免疫反应调节和信号转导等多种生物过程中发挥着重要作用。鸟氨酸脱羧酶(ODC)通过催化鸟氨酸以磷酸吡哆醛(PLP)依赖的方式转化为腐胺,引发多胺生物合成。虽然哺乳动物和原生动物ODCs的结构已经被阐明,但真菌ODCs的结构仍未被表征。在本研究中,AlphaFold2模拟了四种真菌的odc结构:乳酸克卢维菌、白色念珠菌、汉斯氏Debaryomyces hansenii和pombe Schizosaccharomyces。结果表明,虽然这些ODCs具有α/β-桶结构域和β-片结构域,但它们的活性位点构象存在细微差异。此外,ODCs和相关脱羧酶的底物选择性取决于特异性螺旋内天冬氨酸或谷氨酸残基的Cα与PLP的C4α之间的距离。值得注意的是,细菌空肠弯曲杆菌脱羧酶(CjCANSDC)与最大底物的结合距离最长,而真菌ODC与最小底物的结合距离最短。此外,还观察到活性位点内氨基酸残基组成的显着差异。这项研究提供了对广泛生物中ODCs的结构多样性和催化活性的见解,促进了对结构依赖进化过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communicative and Integrative Biology
Communicative and Integrative Biology Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
22
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信