Longitudinal changes in the transcriptionally active and intact HIV reservoir after starting ART during acute infection.

IF 4 2区 医学 Q2 VIROLOGY
Julie Janssens, Adam Wedrychowski, Sun Jin Kim, Cordelia Isbell, Rebecca Hoh, Satish K Pillai, Timothy J Henrich, Steven G Deeks, Nadia R Roan, Sulggi A Lee, Steven A Yukl
{"title":"Longitudinal changes in the transcriptionally active and intact HIV reservoir after starting ART during acute infection.","authors":"Julie Janssens, Adam Wedrychowski, Sun Jin Kim, Cordelia Isbell, Rebecca Hoh, Satish K Pillai, Timothy J Henrich, Steven G Deeks, Nadia R Roan, Sulggi A Lee, Steven A Yukl","doi":"10.1128/jvi.01431-24","DOIUrl":null,"url":null,"abstract":"<p><p>Even in antiretroviral therapy (ART)-suppressed human immunodeficiency virus (HIV)-infected individuals, there are heterogeneous populations of HIV-expressing cells exhibiting variable degrees of progression through blocks to HIV transcriptional initiation, elongation, completion, and splicing. These HIV-transcribing cells likely contribute to HIV-associated immune activation and inflammation as well as the viral rebound that occurs after stopping ART. However, it is unclear whether the blocks to HIV transcription are present before ART and how the timing and duration of ART may affect the clearance of cells expressing HIV transcripts that differ in their processivity and/or presence of mutations. To investigate these questions, we quantified different types of HIV transcripts and the corresponding HIV DNA regions/proviruses in longitudinal blood samples obtained before ART initiation (T1) and after 6 months (T2) and 1 year (T3) of ART in 16 individuals who initiated ART during acute HIV infection. Before ART, the pattern of HIV transcripts suggested blocks to elongation and splicing, and only ~10% of intact proviruses were transcribing intact HIV RNA. During the first 6 months of ART, we detected progressively greater reductions in initiated, 5'-elongated, mid-transcribed, completed, and multiply spliced HIV transcripts. Completed HIV RNA decayed faster than initiated or 5'-elongated HIV RNA, and intact HIV RNA tended to decay faster than defective HIV RNA. HIV DNA and RNA levels at T1-T3 correlated inversely with baseline CD4+ T-cell counts. Our findings suggest the existence of immune responses that act selectively to reduce HIV transcriptional completion and/or preferentially kill cells making completed or intact HIV RNA.IMPORTANCEEven in virologically suppressed HIV-infected individuals, expression of viral products from both intact and defective proviruses may contribute to HIV-associated immune activation and inflammation, which are thought to underlie the organ damage that persists despite suppressive ART. We investigated how the timing of ART initiation and the duration of ART affect the heterogeneous populations of HIV-transcribing cells, including a detailed characterization of the different HIV transcripts produced before ART and the rate at which they decay after ART initiation during acute HIV infection. Even during untreated infection, most cells (~90%) have blocks at some stage of transcription. Furthermore, different HIV transcripts decline at different rates on ART, with the fastest decay of cells making completed and intact HIV RNA. Our results suggest that intrinsic or extrinsic immune responses act selectively to either reduce particular stages of HIV transcription or cause selective killing of cells making particular HIV transcripts.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0143124"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01431-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Even in antiretroviral therapy (ART)-suppressed human immunodeficiency virus (HIV)-infected individuals, there are heterogeneous populations of HIV-expressing cells exhibiting variable degrees of progression through blocks to HIV transcriptional initiation, elongation, completion, and splicing. These HIV-transcribing cells likely contribute to HIV-associated immune activation and inflammation as well as the viral rebound that occurs after stopping ART. However, it is unclear whether the blocks to HIV transcription are present before ART and how the timing and duration of ART may affect the clearance of cells expressing HIV transcripts that differ in their processivity and/or presence of mutations. To investigate these questions, we quantified different types of HIV transcripts and the corresponding HIV DNA regions/proviruses in longitudinal blood samples obtained before ART initiation (T1) and after 6 months (T2) and 1 year (T3) of ART in 16 individuals who initiated ART during acute HIV infection. Before ART, the pattern of HIV transcripts suggested blocks to elongation and splicing, and only ~10% of intact proviruses were transcribing intact HIV RNA. During the first 6 months of ART, we detected progressively greater reductions in initiated, 5'-elongated, mid-transcribed, completed, and multiply spliced HIV transcripts. Completed HIV RNA decayed faster than initiated or 5'-elongated HIV RNA, and intact HIV RNA tended to decay faster than defective HIV RNA. HIV DNA and RNA levels at T1-T3 correlated inversely with baseline CD4+ T-cell counts. Our findings suggest the existence of immune responses that act selectively to reduce HIV transcriptional completion and/or preferentially kill cells making completed or intact HIV RNA.IMPORTANCEEven in virologically suppressed HIV-infected individuals, expression of viral products from both intact and defective proviruses may contribute to HIV-associated immune activation and inflammation, which are thought to underlie the organ damage that persists despite suppressive ART. We investigated how the timing of ART initiation and the duration of ART affect the heterogeneous populations of HIV-transcribing cells, including a detailed characterization of the different HIV transcripts produced before ART and the rate at which they decay after ART initiation during acute HIV infection. Even during untreated infection, most cells (~90%) have blocks at some stage of transcription. Furthermore, different HIV transcripts decline at different rates on ART, with the fastest decay of cells making completed and intact HIV RNA. Our results suggest that intrinsic or extrinsic immune responses act selectively to either reduce particular stages of HIV transcription or cause selective killing of cells making particular HIV transcripts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信