Ariel J Kuhn, Victor K Outlaw, Tara C Marcink, Zhen Yu, Megan C Mears, Maria N Cajimat, Dale F Kreitler, Payton R Cleven, Jee Ching Mook, Dennis A Bente, Matteo Porotto, Samuel H Gellman, Anne Moscona
{"title":"Enhancing the solubility of SARS-CoV-2 inhibitors to increase future prospects for clinical development.","authors":"Ariel J Kuhn, Victor K Outlaw, Tara C Marcink, Zhen Yu, Megan C Mears, Maria N Cajimat, Dale F Kreitler, Payton R Cleven, Jee Ching Mook, Dennis A Bente, Matteo Porotto, Samuel H Gellman, Anne Moscona","doi":"10.1128/jvi.02159-24","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 poses an ongoing threat to human health as variants continue to emerge. Several effective vaccines are available, but a diminishing number of Americans receive the updated vaccines (only 22% received the 2023 update). Public hesitancy towards vaccines and common occurrence of \"breakthrough\" infections (i.e.<i>,</i> infections of vaccinated individuals) highlight the need for alternative methods to reduce viral transmission. SARS-CoV-2 enters cells by fusing its envelope with the target cell membrane in a process mediated by the viral spike protein, S. The S protein operates via a Class I fusion mechanism in which fusion between the viral envelope and host cell membrane is mediated by structural rearrangements of the S trimer. We previously reported lipopeptides derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibit fusion by SARS-CoV-2, both <i>in vitro</i> and <i>in vivo</i>. These lipopeptides bear an attached cholesterol unit to anchor them in the membrane. Here, to improve prospects for experimental development and future clinical utility, we employed structure-guided design to incorporate charged residues at specific sites in the peptide to enhance aqueous solubility. This effort resulted in two new, potent lipopeptide inhibitors.</p><p><strong>Importance: </strong>Despite the existence of vaccines for SARS-CoV-2, the constant evolution of new variants and the occurrence of breakthrough infections highlight the need for new and effective antiviral approaches. We have shown that lipopeptides designed to bind a conserved region on the SARS-CoV-2 spike protein can effectively block viral entry into cells and thereby block infection. To support the feasibility of using this approach in humans, we re-designed these lipopeptides to be more soluble, using information about the structure of the spike protein interacting with the peptides to modify the peptide chain. The new peptides are effective against both SARS-CoV-2 and MERS. The lipopeptides described here could serve as treatment for people who are unvaccinated or who experience breakthrough infections, and the approach to increasing solubility can be applied in a broad spectrum approach to treating infections with emerging viruses.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0215924"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.02159-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SARS-CoV-2 poses an ongoing threat to human health as variants continue to emerge. Several effective vaccines are available, but a diminishing number of Americans receive the updated vaccines (only 22% received the 2023 update). Public hesitancy towards vaccines and common occurrence of "breakthrough" infections (i.e., infections of vaccinated individuals) highlight the need for alternative methods to reduce viral transmission. SARS-CoV-2 enters cells by fusing its envelope with the target cell membrane in a process mediated by the viral spike protein, S. The S protein operates via a Class I fusion mechanism in which fusion between the viral envelope and host cell membrane is mediated by structural rearrangements of the S trimer. We previously reported lipopeptides derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibit fusion by SARS-CoV-2, both in vitro and in vivo. These lipopeptides bear an attached cholesterol unit to anchor them in the membrane. Here, to improve prospects for experimental development and future clinical utility, we employed structure-guided design to incorporate charged residues at specific sites in the peptide to enhance aqueous solubility. This effort resulted in two new, potent lipopeptide inhibitors.
Importance: Despite the existence of vaccines for SARS-CoV-2, the constant evolution of new variants and the occurrence of breakthrough infections highlight the need for new and effective antiviral approaches. We have shown that lipopeptides designed to bind a conserved region on the SARS-CoV-2 spike protein can effectively block viral entry into cells and thereby block infection. To support the feasibility of using this approach in humans, we re-designed these lipopeptides to be more soluble, using information about the structure of the spike protein interacting with the peptides to modify the peptide chain. The new peptides are effective against both SARS-CoV-2 and MERS. The lipopeptides described here could serve as treatment for people who are unvaccinated or who experience breakthrough infections, and the approach to increasing solubility can be applied in a broad spectrum approach to treating infections with emerging viruses.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.