The Dipeptidyl Peptidase-4 Inhibitor Saxagliptin as a Candidate Treatment for Disorders of Consciousness: A Deep Learning and Retrospective Clinical Analysis.

IF 3.1 3区 医学 Q2 CLINICAL NEUROLOGY
Daniel Toker, Jeffrey N Chiang, Paul M Vespa, Caroline Schnakers, Martin M Monti
{"title":"The Dipeptidyl Peptidase-4 Inhibitor Saxagliptin as a Candidate Treatment for Disorders of Consciousness: A Deep Learning and Retrospective Clinical Analysis.","authors":"Daniel Toker, Jeffrey N Chiang, Paul M Vespa, Caroline Schnakers, Martin M Monti","doi":"10.1007/s12028-025-02217-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite advancements in the neuroscience of consciousness, no new medications for disorders of consciousness (DOC) have been discovered in more than a decade. Repurposing existing US Food and Drug Administration (FDA)-approved drugs for DOC is crucial for improving clinical management and patient outcomes.</p><p><strong>Methods: </strong>To identify potential new treatments among existing FDA-approved drugs, we used a deep learning-based drug screening model to predict the efficacy of drugs as awakening agents based on their three-dimensional molecular structure. A retrospective cohort study from March 2012 to October 2024 tested the model's predictions, focusing on changes in Glasgow Coma Scale (GCS) scores in 4047 patients in a coma from traumatic, vascular, or anoxic brain injury.</p><p><strong>Results: </strong>Our deep learning drug screens identified saxagliptin, a dipeptidyl peptidase-4 inhibitor, as a promising awakening drug for both acute and prolonged DOC. The retrospective clinical analysis showed that saxagliptin was associated with the highest recovery rate from acute coma among diabetes medications. After matching patients by age, sex, initial GCS score, coma etiology, and glycemic status, brain-injured patients with diabetes on incretin-based therapies, including dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 analogues, recovered from coma at significantly higher rates compared to both brain-injured patients with diabetes on non-incretin-based diabetes medications (95% confidence interval of 1.8-14.1% higher recovery rate, P = 0.0331) and brain-injured patients without diabetes (95% confidence interval of 2-21% higher recovery rate, P = 0.0272). Post matching, brain-injured patients with diabetes on incretin-based therapies also recovered at a significantly higher rate than patients treated with amantadine (95% confidence interval for the difference 2.4-25.1.0%, P = 0.0364). A review of preclinical studies identified several pathways through which saxagliptin and other incretin-based medications may aid awakening from both acute and chronic DOC: restoring monoaminergic and GABAergic neurotransmission, reducing brain inflammation and oxidative damage, clearing hyperphosphorylated tau and amyloid-β, normalizing thalamocortical glucose metabolism, increasing neural plasticity, and mitigating excitotoxic brain damage.</p><p><strong>Conclusions: </strong>Our findings suggest incretin-based medications in general, and saxagliptin in particular, as potential novel therapeutic agents for DOC. Further prospective clinical trials are needed to confirm their efficacy and safety in DOC.</p>","PeriodicalId":19118,"journal":{"name":"Neurocritical Care","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocritical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12028-025-02217-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Despite advancements in the neuroscience of consciousness, no new medications for disorders of consciousness (DOC) have been discovered in more than a decade. Repurposing existing US Food and Drug Administration (FDA)-approved drugs for DOC is crucial for improving clinical management and patient outcomes.

Methods: To identify potential new treatments among existing FDA-approved drugs, we used a deep learning-based drug screening model to predict the efficacy of drugs as awakening agents based on their three-dimensional molecular structure. A retrospective cohort study from March 2012 to October 2024 tested the model's predictions, focusing on changes in Glasgow Coma Scale (GCS) scores in 4047 patients in a coma from traumatic, vascular, or anoxic brain injury.

Results: Our deep learning drug screens identified saxagliptin, a dipeptidyl peptidase-4 inhibitor, as a promising awakening drug for both acute and prolonged DOC. The retrospective clinical analysis showed that saxagliptin was associated with the highest recovery rate from acute coma among diabetes medications. After matching patients by age, sex, initial GCS score, coma etiology, and glycemic status, brain-injured patients with diabetes on incretin-based therapies, including dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 analogues, recovered from coma at significantly higher rates compared to both brain-injured patients with diabetes on non-incretin-based diabetes medications (95% confidence interval of 1.8-14.1% higher recovery rate, P = 0.0331) and brain-injured patients without diabetes (95% confidence interval of 2-21% higher recovery rate, P = 0.0272). Post matching, brain-injured patients with diabetes on incretin-based therapies also recovered at a significantly higher rate than patients treated with amantadine (95% confidence interval for the difference 2.4-25.1.0%, P = 0.0364). A review of preclinical studies identified several pathways through which saxagliptin and other incretin-based medications may aid awakening from both acute and chronic DOC: restoring monoaminergic and GABAergic neurotransmission, reducing brain inflammation and oxidative damage, clearing hyperphosphorylated tau and amyloid-β, normalizing thalamocortical glucose metabolism, increasing neural plasticity, and mitigating excitotoxic brain damage.

Conclusions: Our findings suggest incretin-based medications in general, and saxagliptin in particular, as potential novel therapeutic agents for DOC. Further prospective clinical trials are needed to confirm their efficacy and safety in DOC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocritical Care
Neurocritical Care 医学-临床神经学
CiteScore
7.40
自引率
8.60%
发文量
221
审稿时长
4-8 weeks
期刊介绍: Neurocritical Care is a peer reviewed scientific publication whose major goal is to disseminate new knowledge on all aspects of acute neurological care. It is directed towards neurosurgeons, neuro-intensivists, neurologists, anesthesiologists, emergency physicians, and critical care nurses treating patients with urgent neurologic disorders. These are conditions that may potentially evolve rapidly and could need immediate medical or surgical intervention. Neurocritical Care provides a comprehensive overview of current developments in intensive care neurology, neurosurgery and neuroanesthesia and includes information about new therapeutic avenues and technological innovations. Neurocritical Care is the official journal of the Neurocritical Care Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信