High-precision localization of radiation isocenter using Winston-Lutz test: Impact of collimator angle, phantom position, and field size

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Weiliang Du
{"title":"High-precision localization of radiation isocenter using Winston-Lutz test: Impact of collimator angle, phantom position, and field size","authors":"Weiliang Du","doi":"10.1002/acm2.70000","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>This study aimed to evaluate the impact of collimator angle, ball bearing (BB) phantom position, and field size on the accuracy of Winston-Lutz (WL) test–derived radiation isocenters.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>WL tests were performed on four TrueBeam linear accelerators. Fifty-six images (eight gantry angles multiplied by seven collimator angles) were acquired for each WL test. Images with different sets of collimator angles were used to compute the radiation isocenters. The resulting radiation isocenters were correlated with the collimator angles. Then, the BB position and radiation field size were varied for the subsequent WL tests. The calculated BB shifts were compared with the known shifts, and the radiation isocenters were compared between different field sizes.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The use of a single collimator angle led to errors of as much as 0.4 mm in the calculated radiation isocenters. Systematic differences were observed between the radiation isocenters derived with collimator angle 0° and those derived with 90° and/or 270°. A commonly used opposing collimator angle pair, 90° and 270°, resulted in a vertical 0.1 mm offset of the radiation isocenters toward the ceiling. Oblique opposite or mixed collimator angles yielded radiation isocenter errors less than 0.1 mm. The BB shifts derived from WL tests were less than 0.1 mm from the known shifts. The radiation isocenters varied by less than 0.1 mm between field sizes ranging from 2 × 2 cm<sup>2</sup> to 20 × 20 cm<sup>2</sup>.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Oblique opposing collimator angle pairs should be considered to minimize errors in localizing radiation isocenters. Uncertainty in BB positioning could be eliminated if the BB is used as a static reference point in space. The field size had no significant effect on the radiation isocenters. With careful design of WL test parameters and image processing, it is possible to achieve a precision of 0.1 mm in localizing radiation isocenters using WL tests.</p>\n </section>\n </div>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":"26 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acm2.70000","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aimed to evaluate the impact of collimator angle, ball bearing (BB) phantom position, and field size on the accuracy of Winston-Lutz (WL) test–derived radiation isocenters.

Methods

WL tests were performed on four TrueBeam linear accelerators. Fifty-six images (eight gantry angles multiplied by seven collimator angles) were acquired for each WL test. Images with different sets of collimator angles were used to compute the radiation isocenters. The resulting radiation isocenters were correlated with the collimator angles. Then, the BB position and radiation field size were varied for the subsequent WL tests. The calculated BB shifts were compared with the known shifts, and the radiation isocenters were compared between different field sizes.

Results

The use of a single collimator angle led to errors of as much as 0.4 mm in the calculated radiation isocenters. Systematic differences were observed between the radiation isocenters derived with collimator angle 0° and those derived with 90° and/or 270°. A commonly used opposing collimator angle pair, 90° and 270°, resulted in a vertical 0.1 mm offset of the radiation isocenters toward the ceiling. Oblique opposite or mixed collimator angles yielded radiation isocenter errors less than 0.1 mm. The BB shifts derived from WL tests were less than 0.1 mm from the known shifts. The radiation isocenters varied by less than 0.1 mm between field sizes ranging from 2 × 2 cm2 to 20 × 20 cm2.

Conclusions

Oblique opposing collimator angle pairs should be considered to minimize errors in localizing radiation isocenters. Uncertainty in BB positioning could be eliminated if the BB is used as a static reference point in space. The field size had no significant effect on the radiation isocenters. With careful design of WL test parameters and image processing, it is possible to achieve a precision of 0.1 mm in localizing radiation isocenters using WL tests.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信