Large Language Models for Chatbot Health Advice Studies: A Systematic Review.

IF 10.5 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Bright Huo, Amy Boyle, Nana Marfo, Wimonchat Tangamornsuksan, Jeremy P Steen, Tyler McKechnie, Yung Lee, Julio Mayol, Stavros A Antoniou, Arun James Thirunavukarasu, Stephanie Sanger, Karim Ramji, Gordon Guyatt
{"title":"Large Language Models for Chatbot Health Advice Studies: A Systematic Review.","authors":"Bright Huo, Amy Boyle, Nana Marfo, Wimonchat Tangamornsuksan, Jeremy P Steen, Tyler McKechnie, Yung Lee, Julio Mayol, Stavros A Antoniou, Arun James Thirunavukarasu, Stephanie Sanger, Karim Ramji, Gordon Guyatt","doi":"10.1001/jamanetworkopen.2024.57879","DOIUrl":null,"url":null,"abstract":"<p><strong>Importance: </strong>There is much interest in the clinical integration of large language models (LLMs) in health care. Many studies have assessed the ability of LLMs to provide health advice, but the quality of their reporting is uncertain.</p><p><strong>Objective: </strong>To perform a systematic review to examine the reporting variability among peer-reviewed studies evaluating the performance of generative artificial intelligence (AI)-driven chatbots for summarizing evidence and providing health advice to inform the development of the Chatbot Assessment Reporting Tool (CHART).</p><p><strong>Evidence review: </strong>A search of MEDLINE via Ovid, Embase via Elsevier, and Web of Science from inception to October 27, 2023, was conducted with the help of a health sciences librarian to yield 7752 articles. Two reviewers screened articles by title and abstract followed by full-text review to identify primary studies evaluating the clinical accuracy of generative AI-driven chatbots in providing health advice (chatbot health advice studies). Two reviewers then performed data extraction for 137 eligible studies.</p><p><strong>Findings: </strong>A total of 137 studies were included. Studies examined topics in surgery (55 [40.1%]), medicine (51 [37.2%]), and primary care (13 [9.5%]). Many studies focused on treatment (91 [66.4%]), diagnosis (60 [43.8%]), or disease prevention (29 [21.2%]). Most studies (136 [99.3%]) evaluated inaccessible, closed-source LLMs and did not provide enough information to identify the version of the LLM under evaluation. All studies lacked a sufficient description of LLM characteristics, including temperature, token length, fine-tuning availability, layers, and other details. Most studies (136 [99.3%]) did not describe a prompt engineering phase in their study. The date of LLM querying was reported in 54 (39.4%) studies. Most studies (89 [65.0%]) used subjective means to define the successful performance of the chatbot, while less than one-third addressed the ethical, regulatory, and patient safety implications of the clinical integration of LLMs.</p><p><strong>Conclusions and relevance: </strong>In this systematic review of 137 chatbot health advice studies, the reporting quality was heterogeneous and may inform the development of the CHART reporting standards. Ethical, regulatory, and patient safety considerations are crucial as interest grows in the clinical integration of LLMs.</p>","PeriodicalId":14694,"journal":{"name":"JAMA Network Open","volume":"8 2","pages":"e2457879"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795331/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMA Network Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1001/jamanetworkopen.2024.57879","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Importance: There is much interest in the clinical integration of large language models (LLMs) in health care. Many studies have assessed the ability of LLMs to provide health advice, but the quality of their reporting is uncertain.

Objective: To perform a systematic review to examine the reporting variability among peer-reviewed studies evaluating the performance of generative artificial intelligence (AI)-driven chatbots for summarizing evidence and providing health advice to inform the development of the Chatbot Assessment Reporting Tool (CHART).

Evidence review: A search of MEDLINE via Ovid, Embase via Elsevier, and Web of Science from inception to October 27, 2023, was conducted with the help of a health sciences librarian to yield 7752 articles. Two reviewers screened articles by title and abstract followed by full-text review to identify primary studies evaluating the clinical accuracy of generative AI-driven chatbots in providing health advice (chatbot health advice studies). Two reviewers then performed data extraction for 137 eligible studies.

Findings: A total of 137 studies were included. Studies examined topics in surgery (55 [40.1%]), medicine (51 [37.2%]), and primary care (13 [9.5%]). Many studies focused on treatment (91 [66.4%]), diagnosis (60 [43.8%]), or disease prevention (29 [21.2%]). Most studies (136 [99.3%]) evaluated inaccessible, closed-source LLMs and did not provide enough information to identify the version of the LLM under evaluation. All studies lacked a sufficient description of LLM characteristics, including temperature, token length, fine-tuning availability, layers, and other details. Most studies (136 [99.3%]) did not describe a prompt engineering phase in their study. The date of LLM querying was reported in 54 (39.4%) studies. Most studies (89 [65.0%]) used subjective means to define the successful performance of the chatbot, while less than one-third addressed the ethical, regulatory, and patient safety implications of the clinical integration of LLMs.

Conclusions and relevance: In this systematic review of 137 chatbot health advice studies, the reporting quality was heterogeneous and may inform the development of the CHART reporting standards. Ethical, regulatory, and patient safety considerations are crucial as interest grows in the clinical integration of LLMs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMA Network Open
JAMA Network Open Medicine-General Medicine
CiteScore
16.00
自引率
2.90%
发文量
2126
审稿时长
16 weeks
期刊介绍: JAMA Network Open, a member of the esteemed JAMA Network, stands as an international, peer-reviewed, open-access general medical journal.The publication is dedicated to disseminating research across various health disciplines and countries, encompassing clinical care, innovation in health care, health policy, and global health. JAMA Network Open caters to clinicians, investigators, and policymakers, providing a platform for valuable insights and advancements in the medical field. As part of the JAMA Network, a consortium of peer-reviewed general medical and specialty publications, JAMA Network Open contributes to the collective knowledge and understanding within the medical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信