Zine-Eddine Khene, Raj Bhanvadia, Isamu Tachibana, Prajwal Sharma, Ivan Trevino, William Graber, Theophile Bertail, Raphael Fleury, Oscar Acosta, Renaud De Crevoisier, Karim Bensalah, Yair Lotan, Vitaly Margulis
{"title":"Impact of contrast enhancement phase on CT-based radiomics analysis for predicting post-surgical recurrence in renal cell carcinoma.","authors":"Zine-Eddine Khene, Raj Bhanvadia, Isamu Tachibana, Prajwal Sharma, Ivan Trevino, William Graber, Theophile Bertail, Raphael Fleury, Oscar Acosta, Renaud De Crevoisier, Karim Bensalah, Yair Lotan, Vitaly Margulis","doi":"10.1007/s11604-025-01740-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effect of CT enhancement phase on radiomics features for predicting post-surgical recurrence of clear cell renal cell carcinoma (ccRCC).</p><p><strong>Methods: </strong>This retrospective study included 144 patients who underwent radical or partial nephrectomy for ccRCC. Preoperative multiphase abdominal CT scans (non-contrast, corticomedullary, and nephrographic phases) were obtained for each patient. Automated segmentation of renal masses was performed using the nnU-Net framework. Radiomics signatures (RS) were developed for each phase using ensembles of machine learning-based models (Random Survival Forests [RSF], Survival Support Vector Machines [S-SVM], and Extreme Gradient Boosting [XGBoost]) with and without feature selection. Feature selection was performed using Affinity Propagation Clustering. The primary endpoint was disease-free survival, assessed by concordance index (C-index).</p><p><strong>Results: </strong>The study included 144 patients. Radical and partial nephrectomies were performed in 81% and 19% of patients, respectively, with 81% of tumors classified as high grade. Disease recurrence occurred in 74 patients (51%). A total of 1,316 radiomics features were extracted per phase per patient. Without feature selection, C-index values for RSF, S-SVM, XGBoost, and Penalized Cox models ranged from 0.43 to 0.61 across phases. With Affinity Propagation feature selection, C-index values improved to 0.51-0.74, with the corticomedullary phase achieving the highest performance (C-index up to 0.74).</p><p><strong>Conclusions: </strong>The results of our study indicate that radiomics analysis of corticomedullary phase contrast-enhanced CT images may provide valuable predictive insight into recurrence risk for non-metastatic ccRCC following surgical resection. However, the lack of external validation is a limitation, and further studies are needed to confirm these findings in independent cohorts.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-025-01740-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To investigate the effect of CT enhancement phase on radiomics features for predicting post-surgical recurrence of clear cell renal cell carcinoma (ccRCC).
Methods: This retrospective study included 144 patients who underwent radical or partial nephrectomy for ccRCC. Preoperative multiphase abdominal CT scans (non-contrast, corticomedullary, and nephrographic phases) were obtained for each patient. Automated segmentation of renal masses was performed using the nnU-Net framework. Radiomics signatures (RS) were developed for each phase using ensembles of machine learning-based models (Random Survival Forests [RSF], Survival Support Vector Machines [S-SVM], and Extreme Gradient Boosting [XGBoost]) with and without feature selection. Feature selection was performed using Affinity Propagation Clustering. The primary endpoint was disease-free survival, assessed by concordance index (C-index).
Results: The study included 144 patients. Radical and partial nephrectomies were performed in 81% and 19% of patients, respectively, with 81% of tumors classified as high grade. Disease recurrence occurred in 74 patients (51%). A total of 1,316 radiomics features were extracted per phase per patient. Without feature selection, C-index values for RSF, S-SVM, XGBoost, and Penalized Cox models ranged from 0.43 to 0.61 across phases. With Affinity Propagation feature selection, C-index values improved to 0.51-0.74, with the corticomedullary phase achieving the highest performance (C-index up to 0.74).
Conclusions: The results of our study indicate that radiomics analysis of corticomedullary phase contrast-enhanced CT images may provide valuable predictive insight into recurrence risk for non-metastatic ccRCC following surgical resection. However, the lack of external validation is a limitation, and further studies are needed to confirm these findings in independent cohorts.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.