Evolving prognostic paradigms in lung adenocarcinoma with brain metastases: a web-based predictive model enhanced by machine learning.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Min Liang, Zhiwen Zhang, Langming Wu, Mafeng Chen, Shifan Tan, Jian Huang
{"title":"Evolving prognostic paradigms in lung adenocarcinoma with brain metastases: a web-based predictive model enhanced by machine learning.","authors":"Min Liang, Zhiwen Zhang, Langming Wu, Mafeng Chen, Shifan Tan, Jian Huang","doi":"10.1007/s12672-025-01854-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Patients with lung adenocarcinoma (LUAD) who develop brain metastases (BM) face significantly poor prognoses. A well-crafted prognostic model could greatly assist clinicians in patient counseling and in devising tailored therapeutic strategies.</p><p><strong>Methods: </strong>The study cohort comprised LUAD patients with BM identified from the surveillance, epidemiology, and end results database between 2000 and 2018. We pinpointed independent prognostic features for overall survival (OS) using Lasso regression analyses. Predictive models were built using Random Forest, XGBoost, Decision Trees, and Artificial Neural Networks, with their performance evaluated via metrics including the area under the receiver operating characteristic curve (AUC), calibration plots, brier score, and decision curve analysis (DCA).</p><p><strong>Results: </strong>We extracted a total of 9121 eligible patients from the database, identifying eleven clinical parameters that significantly influenced OS prognostication. The XGBoost model exhibited superior discriminative power, achieving AUC values of 0.829 and 0.827 for 1- and 2-year survival, respectively, in the training cohort, and 0.816 and 0.809 in the validation cohort. In comparison to other models, the XGBoost model excelled in both training and validation phases, as demonstrated by substantial differences in AUC, DCA, calibration, and Brier score. This model has been made accessible via a web-based platform.</p><p><strong>Conclusions: </strong>This study has developed an XGBoost-based machine learning model with an accompanying web-based application, providing a novel resource for clinicians to support personalized decision-making and enhance treatment outcomes for LUAD patients with BM.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"117"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-01854-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Patients with lung adenocarcinoma (LUAD) who develop brain metastases (BM) face significantly poor prognoses. A well-crafted prognostic model could greatly assist clinicians in patient counseling and in devising tailored therapeutic strategies.

Methods: The study cohort comprised LUAD patients with BM identified from the surveillance, epidemiology, and end results database between 2000 and 2018. We pinpointed independent prognostic features for overall survival (OS) using Lasso regression analyses. Predictive models were built using Random Forest, XGBoost, Decision Trees, and Artificial Neural Networks, with their performance evaluated via metrics including the area under the receiver operating characteristic curve (AUC), calibration plots, brier score, and decision curve analysis (DCA).

Results: We extracted a total of 9121 eligible patients from the database, identifying eleven clinical parameters that significantly influenced OS prognostication. The XGBoost model exhibited superior discriminative power, achieving AUC values of 0.829 and 0.827 for 1- and 2-year survival, respectively, in the training cohort, and 0.816 and 0.809 in the validation cohort. In comparison to other models, the XGBoost model excelled in both training and validation phases, as demonstrated by substantial differences in AUC, DCA, calibration, and Brier score. This model has been made accessible via a web-based platform.

Conclusions: This study has developed an XGBoost-based machine learning model with an accompanying web-based application, providing a novel resource for clinicians to support personalized decision-making and enhance treatment outcomes for LUAD patients with BM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信