Personalized nutrition: perspectives on challenges, opportunities, and guiding principles for data use and fusion.

IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Sharon M Donovan, Mariette Abrahams, Joshua C Anthony, Ying Bao, Maribel Barragan, Kate M Bermingham, Gil Blander, Anna-Sigrid Keck, Bruce Y Lee, Kristin M Nieman, Jose M Ordovas, Victor Penev, Machiel J Reinders, Kris Sollid, Sumeet Thosar, Barbara L Winters
{"title":"Personalized nutrition: perspectives on challenges, opportunities, and guiding principles for data use and fusion.","authors":"Sharon M Donovan, Mariette Abrahams, Joshua C Anthony, Ying Bao, Maribel Barragan, Kate M Bermingham, Gil Blander, Anna-Sigrid Keck, Bruce Y Lee, Kristin M Nieman, Jose M Ordovas, Victor Penev, Machiel J Reinders, Kris Sollid, Sumeet Thosar, Barbara L Winters","doi":"10.1080/10408398.2025.2461237","DOIUrl":null,"url":null,"abstract":"<p><p>Personalized nutrition (PN) delivers tailored dietary guidance by integrating health, lifestyle, and behavioral data to improve individual health outcomes. Recent technological advances have enhanced access to diverse data sources, yet challenges remain in collecting, integrating, and analyzing complex datasets. To address these, the Personalized Nutrition Initiative at Illinois organized a workshop titled \"Personalized Nutrition Data: Challenges & Opportunities,\" which gathered experts to explore three essential data domains in PN: 1) health and biological, 2) social, behavioral, and environmental, and 3) consumer purchasing data. Discussions underscored the importance of cross-disciplinary collaboration to standardize data collection, enable secure data sharing, and develop data fusion techniques that respect privacy and build trust. Participants emphasized the need for representative datasets that include underserved populations, ensuring that PN services are accessible and equitable. Key principles for responsible data integration were proposed, alongside strategies to overcome barriers to effective data use. By addressing these challenges, PN can enhance health outcomes through precise, personalized recommendations tailored to diverse population needs.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-18"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2461237","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized nutrition (PN) delivers tailored dietary guidance by integrating health, lifestyle, and behavioral data to improve individual health outcomes. Recent technological advances have enhanced access to diverse data sources, yet challenges remain in collecting, integrating, and analyzing complex datasets. To address these, the Personalized Nutrition Initiative at Illinois organized a workshop titled "Personalized Nutrition Data: Challenges & Opportunities," which gathered experts to explore three essential data domains in PN: 1) health and biological, 2) social, behavioral, and environmental, and 3) consumer purchasing data. Discussions underscored the importance of cross-disciplinary collaboration to standardize data collection, enable secure data sharing, and develop data fusion techniques that respect privacy and build trust. Participants emphasized the need for representative datasets that include underserved populations, ensuring that PN services are accessible and equitable. Key principles for responsible data integration were proposed, alongside strategies to overcome barriers to effective data use. By addressing these challenges, PN can enhance health outcomes through precise, personalized recommendations tailored to diverse population needs.

个性化营养:对数据使用和融合的挑战、机遇和指导原则的看法。
个性化营养(PN)通过整合健康、生活方式和行为数据来提供量身定制的饮食指导,以改善个人健康结果。最近的技术进步增强了对各种数据源的访问,但在收集、集成和分析复杂数据集方面仍然存在挑战。为了解决这些问题,伊利诺伊州的个性化营养倡议组织了一个名为“个性化营养数据:挑战与机遇”的研讨会,该研讨会聚集了专家,探讨了PN中的三个基本数据领域:1)健康和生物,2)社会,行为和环境,以及3)消费者购买数据。讨论强调了跨学科合作的重要性,以标准化数据收集,实现安全的数据共享,并开发尊重隐私和建立信任的数据融合技术。与会者强调需要有代表性的数据集,包括服务不足的人群,确保PN服务的可及性和公平性。会议提出了负责任数据整合的关键原则,以及克服有效使用数据障碍的战略。通过应对这些挑战,PN可以通过针对不同人群需求量身定制的精确、个性化建议来改善健康结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.60
自引率
4.90%
发文量
600
审稿时长
7.5 months
期刊介绍: Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition. With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信