Mitali Hupele, Ritu Raj, Shikha Rai, Tapasi Sen, Krishna Kanta Haldar
{"title":"Insight into the Coupling of HgS and CuO with Metal-Organic Frameworks Support in Electrocatalytic Oxygen Evolution Reaction.","authors":"Mitali Hupele, Ritu Raj, Shikha Rai, Tapasi Sen, Krishna Kanta Haldar","doi":"10.1002/cphc.202400956","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the coupling of mercury sulfide (HgS) and copper oxide (CuO) nanoparticles with metal-organic frameworks (MOFs) as a support material for enhancing the electrocatalytic oxygen evolution reaction (OER). The integration of HgS and CuO into the MOF framework aims to leverage the unique electronic and structural properties of both the nanoparticles and the MOFs to improve catalytic performance. Metal-organic frameworks (MOFs), particularly ZIF-67, are investigated for their potential to catalyze water-splitting reactions due to their high porosity and large specific surface areas. The strategic incorporation of HgS and CuO into ZIF-67 significantly enhances its electrocatalytic properties, resulting in remarkable performance metrics: a low overpotential of 246 mV at 10 mA/cm<sup>2</sup>, a Tafel slope of 123 mV/dec, an expanded electrochemical active surface area (ECSA) of 23.56 cm<sup>2</sup>, and a reduced charge transfer resistance of 34.86 Ω. This integration enhances porosity and increases active surface area, which is crucial for improved catalytic performance. This investigation introduces an innovative methodology for fabricating highly efficient electrocatalysts, positioning HgS/CuO/ZIF-67 as a promising candidate for oxygen evolution reactions in alkaline media. The findings highlight the potential of this novel nanocomposite in future clean energy applications, particularly in the realm of water-splitting technologies.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400956"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400956","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the coupling of mercury sulfide (HgS) and copper oxide (CuO) nanoparticles with metal-organic frameworks (MOFs) as a support material for enhancing the electrocatalytic oxygen evolution reaction (OER). The integration of HgS and CuO into the MOF framework aims to leverage the unique electronic and structural properties of both the nanoparticles and the MOFs to improve catalytic performance. Metal-organic frameworks (MOFs), particularly ZIF-67, are investigated for their potential to catalyze water-splitting reactions due to their high porosity and large specific surface areas. The strategic incorporation of HgS and CuO into ZIF-67 significantly enhances its electrocatalytic properties, resulting in remarkable performance metrics: a low overpotential of 246 mV at 10 mA/cm2, a Tafel slope of 123 mV/dec, an expanded electrochemical active surface area (ECSA) of 23.56 cm2, and a reduced charge transfer resistance of 34.86 Ω. This integration enhances porosity and increases active surface area, which is crucial for improved catalytic performance. This investigation introduces an innovative methodology for fabricating highly efficient electrocatalysts, positioning HgS/CuO/ZIF-67 as a promising candidate for oxygen evolution reactions in alkaline media. The findings highlight the potential of this novel nanocomposite in future clean energy applications, particularly in the realm of water-splitting technologies.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.